Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1105-1111    DOI: 10.3724/SP.J.1037.2011.00281
  论文 本期目录 | 过刊浏览 |
纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为
江鸿杰, 柯常波, 曹姗姗, 马骁, 张新平
华南理工大学材料科学与工程学院, 广州 510640
PREPARATION OF NANO-SIZED SiC REINFORCED NiTi SHAPE MEMORY COMPOSITES AND THEIR MECHANICAL PROPERTIES AND DAMPING BEHAVIOR
JIANG Hongjie, KE Changbo, CAO Shanshan, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

江鸿杰 柯常波 曹姗姗 马骁 张新平. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J]. 金属学报, 2011, 47(9): 1105-1111.
, , , , . PREPARATION OF NANO-SIZED SiC REINFORCED NiTi SHAPE MEMORY COMPOSITES AND THEIR MECHANICAL PROPERTIES AND DAMPING BEHAVIOR[J]. Acta Metall Sin, 2011, 47(9): 1105-1111.

全文: PDF(1671 KB)  
摘要: 采用粉末冶金梯级烧结法成功制备出轻质、高强且具有一定孔隙率的纳米SiC颗粒增强NiTi合金基形状记忆复合材料(SiC/NiTi). 研究发现, 所制备的SiC/NiTi复合材料具有稳定的线性超弹性; SiC颗粒的引入使SiC/NiTi复合材料具有较高的压缩强度和等效压缩强度, 且强度随SiC含量的增加而提高. 研究还表明, SiC颗粒对合金相组成有一定影响, 但复合材料仍具有NiTi合金的马氏体转变特征, 并保持NiTi合金的高阻尼特性及较高的存储模量.
关键词 NiTi形状记忆合金纳米SiC颗粒复合材料力学性能, 阻尼    
Abstract:NiTi shape memory alloys have attracted significant attention for applications in various fields in the past decades. Although porous NiTi alloys exhibit lower density compared with the dense ones, they are inevitably lower in strength, storage modulus and damping capacity. Therefore, it is imperative to study and improve the compressive performance and storage modulus in porous NiTi alloys. In this study, the nano-sized SiC particle reinforced NiTi shape memory alloy based composites (SiC/NiTi) have been successfully fabricated by means of a step powder-sintering method, which show unique characteristics of lightweight, high strength and stable superelasticity. The fabricated SiC/NiTi composites possess almost the same equivalent strength compared with dense NiTi alloys. On the other hand, they are in the nature of higher strength, including compressive strength and equivalent compressive strength, than porous NiTi alloys. Furthermore, the strength increases with increasing contents of SiC particles. It has been indicated that the addition of SiC particles has a slight influence on the phase composition of the SiC/NiTi composites, while the martensitic phase transformation temperatures of the composites keep unchanged compared with the NiTi alloy without SiC reinforcement. Meanwhile, the fabricated composites inherit the high damping performance of the NiTi matrix, and thus exhibit a high storage modulus.
Key wordsNiTi shape memory alloy    nano-sized SiC particle    composite    mechanical property    damping
收稿日期: 2011-05-04     
基金资助:

国家自然科学基金项目50871039和50801029及中央高校基本科研业务费专项资金项目2011ZM0001资助

作者简介: 江鸿杰, 男, 1980年生, 博士生
[1] Miyazaki S, Otsuka K. Trans ISIJ, 1989; 29: 353

[2] Graesser E J, Cozzarelli F A. J EngMech, 1991; 117: 2590

[3] Aiken I D, Nims K D, Whittaker A S, James M K, Eeri M. Earthq Spectra, 1993; 9: 335

[4] Van Humbeeck J. J Alloys Compd, 2003; 355: 58

[5] Li D S, Zhang Y P, Xiong Z P, Zhang X P. Acta Metall Sin, 2008; 44: 995

(李大圣, 张宇鹏, 熊志鹏, 张新平. 金属学报, 2008; 44: 995)

[6] Li B Y, Rong L J. J Mater Res, 1998; 13: 2847

[7] Yuan B, Chung C Y, Zhang X P, Zeng M Q, Zhu M. Smart Mater Struct, 2005; 14: S201

[8] Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57: 1020

[9] Yang Y, Lan J, Li X C. Mater Sci Eng, 2004; A386: 284

[10] Li D S, Zhang X P, Xiong Z P, Mai Y W. J Alloys Compd, 2010; 490: 15

[11] Maruyama B, Hunt W. JOM, 1999; 11: 59

[12] Contreras A, Angeles–Ch´avez C, Flores O, Perez R. Mater Charact, 2007; 58: 685

[13] Zhang Y P, Yuan B, Zeng M Q, Chung C Y, Zhang X P. J Mater Process Technol, 2007; 439: 192

[14] Kuang Y H, Ngai T, H G, Li Y Y. J Alloys Compd, 2009; 209: 4607

[15] Gale W F, Totemeier T C. Smithell Metals Reference Book. Netherlands: Elsevier, 2004: 9

[16] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2011; 47: 129

(柯常波, 马骁, 张新平. 金属学报, 2011; 47: 129)

[17] Rao G B, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2002; 38: 575

(饶光斌, 王俭秋, 韩恩厚, 柯 伟. 金属学报, 2002; 38: 575)

[18] Zhang X P, Liu H Y, Yuan B, Zhang Y P. Mater Sci Eng, 2008; A481: 170

[19] Li D S. PhD Thesis, South China University of Technology, Guangzhou, 2009

(李大圣. 华南理工大学博士论文, 广州, 2009)

[20] Zhao J S. The Basis of Dislocation Theory. Beijing: National Defense Industry Press, 1989: 148

(赵敬世. 位错理论基础. 北京: 国防工业出版社, 1989: 148)

[21] Lin H C, Wu S K, Yeh M T. Metall Mater Trans, 1993; 24A: 2189

[22] Nishiyama K, Yamanaka M, Omori M, Umekawa S. Mater Sci Lett, 1990; 9: 526

[23] Gao M X, Oliveira F J, Pan Y, Yang L, Baptista J L, Vieira J M. Intermetallics, 2005; 13: 406

[24] Wang H M, Wang C M, Cai L X. Surf Coat Technol, 2003; 168; 202

[25] Cai W, Lu X L, Zhao L C. Mater Sci Eng, 2005; A394: 78
[1] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[5] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[6] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[8] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[9] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[10] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[11] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[12] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[13] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[14] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[15] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.