Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 984-989    DOI: 10.3724/SP.J.1037.2011.00230
  论文 本期目录 | 过刊浏览 |
Ta-7.5%W合金箔材冷轧过程中的位错结构演变
陈畅, 汪明朴, 王珊, 贾延琳, 左波, 夏福中
(中南大学材料科学与工程学院, 长沙 410083)
EVOLUTION OF DISLOCATION MICROSTRUCTURES IN Ta–7.5%W ALLOY FOILS DURING COLD–ROLLING
CHEN Chang, WANG Mingpu, WANG Shan, JIA Yanlin, ZUO Bo, XIA Fuzhong
School of Material Science and Engineering, Central South University, Changsha 410083
引用本文:

陈畅 汪明朴 王珊 贾延琳 左波 夏福中. Ta-7.5%W合金箔材冷轧过程中的位错结构演变[J]. 金属学报, 2011, 47(8): 984-989.
, , , , , . EVOLUTION OF DISLOCATION MICROSTRUCTURES IN Ta–7.5%W ALLOY FOILS DURING COLD–ROLLING[J]. Acta Metall Sin, 2011, 47(8): 984-989.

全文: PDF(657 KB)  
摘要: 本文详细研究了Ta-7.5%W合金中取向为45°立方旋转织构{001}<110>方向的晶粒在冷轧变形过程中的位错结构和显微硬度演变规律. 结果发现,当冷轧变形10%时, 合金中形成了典型的bcc金属冷变形的位错结构,包括位错偶极子、位错反应形成的“剪刀”型位错以及位错碎片亚结构等;随着变形的进一步进行, 其中一种晶粒中初期形成的高密度位错墙在变形后期形成微带组织, 而在另一种晶粒中形成了典型的位错胞结构.由经典位错理论的能量分析, 位错缠结形成的网络结构可以弛豫形成低能的位错胞结构. 在Ta-7.5%W合金中形成微带组织并不需要在晶粒中预先存在位错胞结构, 但是此时合金的晶粒中必须有高密度位错墙结构, 位错密度达到1014/m2左右. 显微硬度测试表明这两种晶粒在冷轧过程中的加工硬化率不同, 与含位错胞组织的晶粒相比,含微带组织晶粒的加工硬化率更高.
关键词 Ta-W合金 冷轧 箔材 织构 位错结构    
Abstract:The most common texture formed in rolled bcc metals is 45? rotated cubic {001}<110>, the detailed deformation structure and microhardness of these grains in cold-rolled Ta–7.5%W alloy foils were carefully investigated. It was found that when cold reduction was 10%, the typical cold deformation microstructures were found in the grains, including dislocation dipoles, a"scissors" type dislocation reaction and dislocation debris. As the reduction increased, high dense dislocation walls were formed firstly and microbands formed subsequently in one kind of grains while typical dislocation cells were formed in another kind of grains. Based on energy analysis, dislocation mesh structures would relax into dislocation cells because the elastic energy of the dislocation cells is always lower than that of the dislocation mesh. It is probable that the microbands are derived from the high dense dislocation walls rather than dislocation cells while the dislocation density in the grains must reach a critical value which is about 1014/m2 in Ta–7.5%W alloy. The microhardness test showed that the work hardening rates were different in these grains. Compared with grains with cell structures, the work hardening rate was higher in grains with microbands.
Key wordsTa–W alloy    cold–rolling    foil    textures    dislocation structure
收稿日期: 2011-04-12     
基金资助:

国家高技术研究发展计划资助项目2006AA03Z517

作者简介: 陈畅, 男, 1982年生, 博士生
[1] Shen K, Duggan B J. Acta Mater, 2007; 55: 1137

[2] Chen Q Z, Quadira M Z, Duggana B J. Philos Mag, 2006;86: 3633

[3] Li Z J, Winther G, Hansen N. Acta Mater, 2006; 54: 401

[4] Park Y B, Lee D N, Gottstein G. Acta Mater, 1998; 46: 3371

[5] Jonas J J. J Mater Process Technol, 2001; 117: 293

[6] Hansen N. Mater Sci Technol, 1990; 6: 1039

[7] Hutchinson B. Mater Sci Forum, 2007; 558–559: 13

[8] Li B L, Godfrey A, Meng Q C, Liu Q, Hansen N. Acta Mater, 2004; 52: 1069

[9] Kuhlmann–Wilsdorf D. Acta Mater, 1999; 47: 1697

[10] Nasser S N, Kapoo R. Int J Plasticity, 2001; 17: 1351

[11] Nemat–Nasser S, Isaacs J B. Acta Mater, 1997; 45: 907

[12] Tse Y Y, Duggan B J. Metall Mater Trans, 2006; 37A: 1055

[13] Duesbery M S. Acta Metall, 1983, 31: 1747

[14] Duesbery M S, Vitek V. Acta Mater, 1998; 46: 1481

[15] Hansen N, Huang X, Winther G. Mater Sci Eng, 2008; A494: 61

[16] Chang J P, Cai W, Bulatov V V. Comput Mater Sci, 2002; 23: 111

[17] Hirth J P, Lothe J. Theory of Dislocations, 2nd Ed. New York: John Wiley & Sons Inc., 1960: 63

[18] Kuhlmann–Wilsdorf D. Prog Mater Sci, 2009; 54: 707

[19] Chen Q Z, Duggan B J. Metall Mater Trans, 2004; 35A: 3423

[20] Quadir M Z, Duggan B J. Acta Mater, 2006; 54: 4337

[21] Hull D, Bacon D J. Introduction to Dislocations, 4th Ed.Oxford: A division of Reed Educational and Professional Publishing Ltd., 2001: 14
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[3] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[6] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[9] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[10] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[12] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[13] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[14] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[15] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.