Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 990-996    DOI: 10.3724/SP.J.1037.2011.00041
  论文 本期目录 | 过刊浏览 |
AZ31镁合金板材低温双向反复弯曲变形及退火过程的组织演化
张雷1, 2, 杨续跃1, 2, 霍庆欢1,田放1, 张玉晶1, 周小杰1,陈佳1
1. 中南大学材料科学与工程学院, 长沙 410083
2. 中南大学有色金属材料科学与工程教育部重点实验室, 长沙 410083
STRUCTURE EVOLUTION OF AZ31 Mg ALLOY SHEET DURING BIDIRECTIONAL CYCLIC BENDING AT LOW TEMPERATURE AND SUBSEQUENT ANNEALING
ZHANG Lei 1,2, YANG Xuyue 1,2, HUO Qinghuan 1, TIAN Fang 1, ZHANG Yujing 1, ZHOU Xiaojie 1, CHEN Jia 1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083
引用本文:

张雷 杨续跃 霍庆欢 田放 张玉晶 周小杰 陈佳. AZ31镁合金板材低温双向反复弯曲变形及退火过程的组织演化[J]. 金属学报, 2011, 47(8): 990-996.
, , , , , . STRUCTURE EVOLUTION OF AZ31 Mg ALLOY SHEET DURING BIDIRECTIONAL CYCLIC BENDING AT LOW TEMPERATURE AND SUBSEQUENT ANNEALING[J]. Acta Metall Sin, 2011, 47(8): 990-996.

全文: PDF(1007 KB)  
摘要: 对AZ31镁合金热轧板材在423 K进行了双向反复弯曲变形及523 K退火处理, 利用OM及SEM/EBSD技术研究了该工艺过程中的组织和织构演化规律. 结果表明, 孪生为其主要的变形机制, 随着变形道次的增加, 靠近表面的晶粒中不断地累积孪生变形, 并最终被高密度的孪晶分割细化; 而中部组织变化不大, 仅有少量孪晶产生; 样品趋向于形成两边孪晶密度大、中间孪晶密度小梯度变化的双面对称组织. 6道次变形的样品在523 K退火1000 s后, 表层晶粒发生了完全静态再结晶, 平均晶粒尺寸由46 μm细化至10 μm左右, 在板材两边各形成了约为1/4板厚的细晶层, 且该区域的组织较为稳定. 此外, 其室温延伸率也由19.01%提高到了24%左右, 但抗拉强度变化不大, 这是由于板材两边的晶粒细化和织构弱化共同作用所致.
关键词 镁合金 双向反复弯曲,孪生 退火 织构    
Abstract:In this work, microstructure and texture evolution in the sheets of Mg alloy AZ31 was studied by means of bidirectional cyclic in–plane bending at 423 K followed by annealing at 523 K. The deformed and subsequent annealed microstructures were investigated by OM and SEM/EBSD examinations. The results showed that twinning is the dominant deformation mechanism. With the increase of deformation pass, more and more twins were produced in the grains near the surfaces of the sheets and finally these grains were serially divided up by twinning intersections. But only a few twins were formed in the grains of the middle of the sheets due to relatively lower strain. Finally, a gradient structure with high–density twins in the regions near the surfaces and, in contrast, lower density ones in the center of the sheets were induced. After 6 pass bending at 423 K followed by a subsequent annealing at 523 K, the average grain size near the surfaces was reduced to about 10 μm from the original size of 46 μm due to operation of static recrystallization at twin intersections and compression twins. Particularly, the relative intensity of the strong texture developed in the sheets was severely weakened by repeated bending, and this led to an increase of fracture elongation from 19.01% to about 24% with little change of tensile strength.
Key wordsmagnesium alloy    bidirectional cyclic bending    twinning    annealing    texture
收稿日期: 2011-01-17     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金资助项目51071182

作者简介: 张雷, 男, 1986年生, 硕士生
[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[2] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665

[3] Jeong H T, Ha T K. J Mater Process Technol, 2007; 187–188: 559

[4] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 205

[5] Takamura H, Miyashita T, Kamegawa A, Okada M. J Alloys Compd, 2003; 356–357: 804

[6] P´erez–Prado M T, Del Valle J A, Ruano O A. Scr Mater, 2004; 50: 667

[7] Yang X Y, Zhang L, Jiang Y P, Zhu Y K. Chin J Nonferrous Met, 2011; 21: 269

(杨续跃, 张雷, 姜育培, 朱亚坤. 中国有色金属学报, 2011; 21: 269)

[8] Yang Q, Ghosh A K. Acta Mater, 2006; 54: 5147

[9] Huang G S, Song B, Xu W, Zhang L. Trans Nonferrous Met Soc China, 2010; 20: 1815

[10] Huang G S, Xu W, Huang G J, Li H C, Song B. J Mater Sci Technol, 2009; 25: 365

[11] Wang L N, Yang P, Xia W J, Chen Z H, Chen D, Li X, Meng L. Acta Metall Sin, 2009; 45: 58

(王丽娜, 杨平, 夏伟军, 陈振华, 陈鼎, 李萧, 孟利. 金属学报, 2009; 45: 58)

[12] Li X, Yang P, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 147

(李萧, 杨平, 孟利, 崔凤娥. 金属学报, 2010; 46: 147)

[13] Li X, Yang P, Wang L N, Meng L, Cui F E. Mater Sci Eng, 2009; A517: 160

[14] Yang X Y, Sun Z Y, Zhang L. Acta Metall Sin, 2010, 46: 607

(杨续跃, 孙争艳, 张雷. 金属学报, 2010; 46: 607)

[15] Wang Y N, Huang J C. Acta Mater, 2007; 55: 897

[16] Liu Q. Acta Metall Sin, 2010; 46: 1458

(刘庆. 金属学报, 2010; 46: 1458)

[17] Yang X Y, Zhang L. Acta Metall Sin, 2009; 45: 1303

(杨续跃, 张雷. 金属学报, 2009; 45: 1303)

[18] Koike J, Sato Y, Ando D. Mater Trans, 2008; 49: 2792
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{10ˉ12}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[5] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[6] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[9] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[11] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[14] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[15] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.