Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1009-1016    DOI: 10.3724/SP.J.1037.2011.00220
  论文 本期目录 | 过刊浏览 |
X70钢在模拟潮湿存储环境中的点蚀行为
刘智勇1,2,董超芳1,贾志军1,李晓刚1
1. 北京科技大学腐蚀与防护中心腐蚀与防护教育部重点实验室, 北京 100083
2. 南昌航空大学材料科学与工程学院, 南昌 330063
PITTING CORROSION OF X70 PIPELINE STEEL IN THE SIMULATED WET STORAGE ENVIRONMENT
LIU Zhiyong 1,2, DONG Chaofang 1, JIA Zhijun 1, LI Xiaogang 1
1.  Corrosion and Protection Center University of Science and Technology Beijing, Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083
2. School of Material Science and Technology, Nanchang Hangkong University, Nanchang 330063
引用本文:

刘智勇 董超芳 贾志军 李晓刚. X70钢在模拟潮湿存储环境中的点蚀行为[J]. 金属学报, 2011, 47(8): 1009-1016.
, , , . PITTING CORROSION OF X70 PIPELINE STEEL IN THE SIMULATED WET STORAGE ENVIRONMENT[J]. Acta Metall Sin, 2011, 47(8): 1009-1016.

全文: PDF(1070 KB)  
摘要: 应用电化学极化技术、电化学阻抗谱、模拟浸泡实验, 研究了X70钢在模拟潮湿存储环境中点蚀的发生机制及规律. 结果表明, X70钢在模拟潮湿存储环境中可以发生点蚀, 导致点蚀发生的腐蚀介质来自于层流冷却水中的腐蚀性物质,其中HCO3-和NO3-是致钝剂, 而Cl-和SO42-可破坏钝化膜, 促进点蚀发生. 在0.5 mol/L的NaHCO3介质中当Cl-浓度达到0.02 mol/L时钝化膜即失去保护性. Cl-浓度是影响点蚀的萌生和发展的关键因素, 当其浓度较低时点蚀容易形核, 但仅有少数能够长大; 而当其浓度适中(约0.149 mol/L)时点蚀敏感性最高, 点蚀容易长大; 当其浓度过高时发生均匀腐蚀,点蚀难以长大.
关键词 X70管线钢 点蚀 潮湿存储环境    
Abstract:Pitting mechanism and behaviour of X70 pipeline steel in humid storage environments were investigated using electrochemical polarization curves, electrochemical impedance spectrums (EIS), immersing corrosion tests and corrosion morphology observation through SEM. It was demonstrated that pitting of X70 pipeline steel occurred in simulated moist storage environments, for which the corrosive substances came from the residual species in laminar cooling water introduced during steel manufacture processes. HCO3 - and NO3 are passivating agents, Cl and SO42−  would destroyed the passivation layer, which could lead to pitting. In solution with 0.5 mol/L NaHCO3, 0.02 mol/L Cl was enough to break the passivation layer. Cl concentration is a key factor for pitting initiation and propagation. When the Cl concentration was relatively low, pitting could initiate but was hard to grow up. When the Cl concentration was moderate (about 0.149 mol/L), pitting sensitivity was the highest because pitting was easy to grow up. However, if the concentration of Cl− was too high, uniform corrosion occurred.
Key wordsX70 pipeline steel    pitting    wet storage environment
收稿日期: 2011-04-08     
基金资助:

国家自然科学基金项目50901041和中国博士后科学基金项目20100480196资助

作者简介: 刘智勇, 男, 1978年生, 博士
[1] Li M C, Cheng Y F. Electrochim Acta, 2007; 53: 2831

[2] Manfredi C, Otegui J L. Eng Fail Analy, 2002; 9: 495

[3] Ramanarayanan T A, Smith S N. Corrosion, 1990; 43: 4001

[4] Azevedo C R F. Eng Fail Analy, 2007; 14: 978

[5] Albarran J L, Martinez L, L´opez H F. Scr Mater, 1998; 38: 749

[6] Chattoraj I, Tiwari S B, Ray A K. Corros Sci, 1995; 37: 885

[7] Parkins R N, Blanchard Jr W K, Delanty B S. Corrosion, 1994; 50: 394

[8] Park J J, Pyun S I, Na K H, Kho Y T. Corrosion, 2002; 58: 329

[9] Beavers J A, Harle B A. J OffshMech Arc Eng, 2001; 123: 147

[10] Hardie D, Charles E A, Lopez A H. Corros Sci, 2006; 48: 4378

[11] Gu B, Luo J, Mao X. Corrosion, 1999; 55: 96

[12] Yang Z P. Pipel Tech Equip, 1999; (5): 12

(杨祖佩. 管道技术与设备, 1999; (5): 12)

[13] Liu Z Y, Dong C F, Li X G. Chin J Mech Eng, 2011; 47:62

(刘智勇, 董超芳, 李晓刚. 机械工程学报, 2011; 47: 62)

[14] Van Boven G, Chen W, Rogge R. Acta Mater, 2007; 55: 29

[15] Li L,Wang C, Yuan B Y, Chen S H. Electrochem Communi, 2008; 10: 103

[16] Laycock N J, Newman R C. Corros Sci, 1997; 39: 1771

[17] Frankel G S. J Electrochem Soc, 1998; 145: 2186

[18] Jia Z J, Li X G, Dong C F, Cheng Y F. Eng Fail Analy, 2009; 16: 2342

[19] Li W S, Cui N, Luo J L. Electrochim Acta, 2004; 49: 1663

[20] Pickering H W. Corros Sci, 1989; 29: 325

[21] Nesic S, Postlethwaite J, Olsen S. Corrosion, 1996; 52: 280

[22] Li M C, Lin H C, Cao C N. J Chin Soc Corros Prot, 2000; 20: 111

(李谋成, 林海潮, 曹楚南. 中国腐蚀与防护学报, 2000; 20: 111)

[23] Ernst P, Newman R C. Corros Sci, 2002; 44: 943
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[6] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[7] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[8] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[9] 赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[10] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[11] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[12] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[13] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[14] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
[15] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.