Please wait a minute...
金属学报  2010, Vol. 46 Issue (3): 257-276    DOI: 10.3724/SP.J.1037.2009.00748
  综述 本期目录 | 过刊浏览 |
等通道转角挤压过程中fcc金属的微观结构演化与力学性能
吴世丁; 安祥海; 韩卫忠; 屈伸; 张哲峰
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF FCC METALLIC MATERIALS SUBJECTED TO EQUAL CHANNEL ANGULAR PRESSING
WU Shiding; AN Xianghai; HAN Weizhong; QU Shen; ZHANG Zhefeng
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

吴世丁 安祥海 韩卫忠 屈伸 张哲峰. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46(3): 257-276.
, , , , . MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF FCC METALLIC MATERIALS SUBJECTED TO EQUAL CHANNEL ANGULAR PRESSING[J]. Acta Metall Sin, 2010, 46(3): 257-276.

全文: PDF(2892 KB)  
摘要: 

系统总结了面心立方(fcc)金属材料在等通道转角挤压(ECAP)变形后的晶粒细化、微观结构演化规律和力学性能. 根据ECAP变形的特点, 利用具有特殊取向的Al单晶体和Cu双晶体, 经过一道次ECAP挤压发现: 材料在ECAP模具对角面附近发生严重塑性变形; 除了沿模具对角面切应力的作用外, 沿垂直于模具对角面的切应力也起重要作用. 此外, 通过设计特殊取向的Cu单晶体、Al单晶体和粗晶Cu-3%Si合金经过一道次ECAP挤压, 系统研究了层错能、晶粒尺寸和晶体学取向对fcc金属形变孪生所需的孪生应力的影响. 对具有不同层错能的Cu-Al合金进行多道次ECAP挤压表明, 随着层错能降低, Cu-Al合金的晶粒细化机制逐步从位错分割机制转变为孪生碎化机制, 最小晶粒尺寸逐步减小, 具有较高或较低层错能材料比中等层错能材料更容易获得均匀的微观组织; Cu-Al合金的拉伸强度和均匀延伸率随着层错能的降低同步提高, 即随着层错能的降低, Cu-Al合金的强度--塑性匹配性提高.

关键词 等通道转角挤压fcc金属微观结构晶粒细化力学性能    
Abstract

Microstructure evolution, grain refinement mechanism and mechanical properties of face-centered cubic (fcc) metallic materials, subjected to equal channel angular pressing (ECAP), were systematically investigated. According to the special shear deformation mode of ECAP, Al single crystals with different orientations and Cu bicrystals with different initial grain boundary directions were subjected to ECAP for one pass, and it is found that shear deformations both parallel and perpendicular to intersection plane play important roles in the ECAP process. Moreover, Al single crystals, Cu single crystals and polycrystalline Cu-3%Si (mass fraction) alloy with different stacking fault energies (SFEs) and special crystallographic orientations, subjected to ECAP for one pass, were selected to experimentally and analytically explore the combined effects of crystallographic orientation, SFE and grain size on deformation twinning behaviors in several fcc crystals. Furthermore, ultrafine grained (UFG) or nanocrystalline (NC) Cu-Al alloys with different Al contents were prepared using multiple-passes ECAP. The results show that the grain refinement mechanism is gradually transformed from dislocation subdivision to twin fragmentation, and the equilibrium grain size decreases with lowering the SFE of Cu-Al alloys. Meanwhile, the homogeneous microstructures of materials with high or low SFE are much more readily gained than those of medium-SFE metals. More significantly, the strength and uniform elongation can be simultaneously improved with lowering the SFE, i.e., the better strength-ductility combination is achieved in the Cu-Al alloy with lower SFE.

Key wordsequal channel angular pressing    fcc metal    microstructure    grain refinement    mechanical property
收稿日期: 2009-11-10     
基金资助:

国家自然科学基金项目50171072, 50571102, 50625103, 50890173, 50841024和50931005资助

作者简介: 吴世丁, 男, 1963年生, 研究员

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4] Valiev R Z, Korznikov A V, Mulyukov R R. Mater Sci Eng, 1993; A168: 141
[5] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[6] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[7] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Acta Mater, 1999; 47: 579
[8] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[9] Cui G R, Ma Z Y, Li S X. Acta Mater, 2009; 57: 5718
[10] Segal V M. Mater Sci Eng, 1995; A197: 157
[11] Segal V M. Mater Sci Eng, 2003; A345: 36

[12] Wang Z G, Wu S D, Jiang C B, Liu S M, Alexandrov I V. Proc Fatigue, vol.3, West Midlands: Engineering Advisory Services, 2002: 1541
[13] Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon T G. Mater Sci Eng, 2006; A420: 79
[14] Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon T G. Acta Mater, 2004; 52: 1387
[15] Miyamoto H, Erb U, Koyama T, Mimaki T, Vinogradov A, Hashimoto S. Philos Mag Lett, 2004; 84: 235
[16] Zhu Y T, Lowe T C. Mater Sci Eng, 2000; A291: 46
[17] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1997; 45: 4733
[18] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[19] Tao N R, Lu K. Scr Mater, 2009; 60: 1039
[20] An X H, Han W Z, Huang C X, Zhang P, Yang G, Wu S D, Zhang Z F. Appl Phys Lett, 2008; 92: 201915
[21] Wang Y M, Ma E. Acta Mater, 2004; 52: 1699
[22] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[23] Han W Z. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(韩卫忠. 中国科学院金属研究所博士论文, 沈阳, 2008)

[24] Qu S. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
(屈伸. 中国科学院金属研究所博士论文, 沈阳, 2009)

[25] An X H, Lin Q Y, Qu S, Yang G, Wu S D, Zhang Z F. J
Mater Res, 2009: 24: 3636
[26] An X H, Qu S, Wu S D, Zhang Z F. J Mater Res, submitted
[27] Han W Z, Zhang Z F, Wu S D, Li S X. Acta Mater, 2007;
55: 5889
[28] Han W Z, Yang H J, An X H, Yang R Q, Li S X, Wu S
D, Zhang Z F. Acta Mater, 2009; 57: 1132
[29] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[30] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[31] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter
H. Acta Mater, 2001; 49: 2713
[32] Han W Z, Zhang Z F, Wu S D, Li S X. Philos Mag, 2008;
88: 3011
[33] Han W Z, Wu S D, Li S X, Zhang Z F. Appl Phys Lett,
2008; 92: 221909
[34] Han W Z, Cheng G M, Li S X, Wu S D, Zhang Z F. Phys
Rev Lett, 2008; 101: 115505
[35] Han W Z, Wu S D, Huang C X, Li S X, Zhang Z F. Adv
Eng Mater, 2008; 10: 1110
[36] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[37] Venables J A. Philos Mag, 1961; 6: 379
[38] Hang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X.
Acta Mater, 2006; 54: 655
[39] Hirth J P, Lothe J. Theory of Dislocations. 2 Ed., John
Wiley & Son Inc., Canada, 1982: 1
[40] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt
D M, Mao S X. Science, 2004; 305: 654
[41] Van Swygenhoven H. Science, 2002; 296: 66
[42] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q
S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57:
1586
[43] Komura S, Horita Z, Nemoto M. J Mater Res, 1999; 14:
4044
[44] Zhilyaev A P, Kim B K, Szpunar J A. Mater Sci Eng,
2005; A391: 377
[45] Mohamed F A. Acta Mater, 2003; 51: 4107
[46] Balogh L, Ung´ar T, Zhao Y H, Zhu Y T, Horita Z, Xu C,
Langdon T G. Acta Mater, 2008; 56: 809
[47] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304:
422
[48] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[49] Shen Y, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005;
52: 989
[50] Li Y S, Zhang Y, Tao N R, Lu K. Acta Mater, 2009; 57:
761

[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.