Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 404-410    DOI: 10.3724/SP.J.1037.2009.00650
  论文 本期目录 | 过刊浏览 |
冷轧退火后铁素体不锈钢的晶界面分布
方晓英1;王卫国1;Rohrer G S2;周邦新3
1. 山东理工大学机械工程学院; 淄博 255049
2. Materials Science and Engineering Department; Carnegie Mellon University; Pittsburgh; PA 15213; USA
3. 上海大学材料科学与工程学院材料研究所; 上海 200072
GRAIN BOUNDARY PLANE DISTRIBUTIONS IN THE COLD–ROLLED AND ANNEALED FERRITIC STAINLESS STEEL
FANG Xiaoying 1; WANG Weiguo 1; Rohrer G S 2; ZHOU Bangxin 3
1. School of Mechanical Engineering; Shandong University of Technology; Zibo 255049
2. Materials Science and Engineering Department; Carnegie Mellon Univeristy; Pittsburgh; PA 15213; USA
3. Institute for materials; School of Materials Science and Engineering; Shanghai University; Shanghai 200072
引用本文:

方晓英 王卫国 Rohrer G S 周邦新. 冷轧退火后铁素体不锈钢的晶界面分布[J]. 金属学报, 2010, 46(4): 404-410.
, , , . GRAIN BOUNDARY PLANE DISTRIBUTIONS IN THE COLD–ROLLED AND ANNEALED FERRITIC STAINLESS STEEL[J]. Acta Metall Sin, 2010, 46(4): 404-410.

全文: PDF(4936 KB)  
摘要: 

采用EBSD技术测定了冷轧退火铁素体不锈钢样品单一截面(轧面)的取向成像显微图(OIM),采用直线拟合法重构出晶界迹线, 利用五参数法对晶界面{hkl}的分布进行了统计分析.结果表明, 经85%冷轧变形的样品再经780℃退火后, 合金虽然不存在明显的晶粒取向织构, 也不存在以特定轴角对为特征的晶界择优分布, 但其晶界面{hkl}的分布却具有一定的择优特性, 而且在不同退火阶段, 随着平均晶粒尺寸由小变大, 择优分布的晶界面随之改变. 当平均晶粒尺寸为9 μm时, 择优分布的晶界面为{100}晶面, 其分布密度超过平均值12%左右; 随着晶粒的长大, 当平均晶粒尺寸达到15 μm时, 择优分布的晶界面以{111}为主, 其次为{100}和{112}晶面, 其最高分布密度超过平均值10%左右. 对于特定取向差晶界, 这种晶界面的择优分布特性明显增强. 分析认为, 退火过程中某些低能晶界由于迁移速率低而被保留下来是晶界面分布存在择优性的重要原因.

关键词 铁素体不锈钢晶界面分布 晶界取向 EBSD    
Abstract

The grain boundary plane distribution in the cold–rolled and annealed ferritic stainless steel has been analyzed statistically by a five–parameter method based on the mis–orientations of adjacent grains and the orientations of grain boundary traces determined by electron backscatter diffraction (EBSD) attached to a field emission scanning electron microscope (FE–SEM). The results show that no preferred texture occurrs either in grain orientations or grain boundary mis–orientations characterized by axis–angle pairs in the specimens which were cold rolled by 85% reduction in thickness and subsequently annealed at 780 ℃. However, there are developed textures for the orientations of grain boundary planes. And also, the preferred planes vary with averaged grain size levels. At the level of 9 μm, grain boundary planes favor the {100} orientation, with their density distribution 12% higher than a random distribution; Whereas at the level of 15 μm, {111} planes are preferred and {100} and {112} planes are sub–preferred, with the density distribution on {111} about 10% higher than a random distribution. Moreover, the anisotropy of grain boundary plane distributions is larger at specific mis–orientations. The discussion points out the preferred grain boundary planes might possess lwer energes and tend to being preserved due to their lower growth rates during annealing.

Key wordsferritic stainless steel    grain boundary plane distribution    grain boundary misorientation    EBSD
收稿日期: 2009-09-25     
基金资助:

国家自然科学基金项目50771060和宝钢与国家自然科学基金委联合基金项目50974147资助

作者简介: 方晓英, 女, 1971年生, 副教授, 博士

[1] Chadwick G A, Smith D A. Grain Boundary Tructure and Properties. London: Academic Press, 1976: 201
[2] Humphreys F J. Recrystallization & Related Annealing Phenomena. Oxford; Elsevier Ltd, 2004: 91
[3] Watanabe T. Res Mech, 1984; 11: 47
[4] Palumbo G, Lehockey E M, Lin P. JOM, 1998; 40: 50
[5] Cheung C, Erb U, Palumbo G. Mater Sci Eng, 1994; A185:39
[6] Lehockey E M, Palumbo G, Lin P. Metall Mater Trans, 1998; 29A: 3069
[7] Wang W G, Guo H. Mater Sci Eng, 2007; A445–446: 155
[8] Wang W G, Yin F X, Guo H, He L, Zhou B X. Mater Sci Eng, 2008; A491: 199
[9] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7
[10] Wang W G, Zhou B X, Feng L. Acta Metall Sin, 2006; 42: 715
(王卫国, 周邦新, 冯 柳. 金属学报, 2006; 42: 715)
[11] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. Acta Metall Sin, 2007; 43: 1239
(方晓英, 王卫国, 郭 红, 张 欣, 周邦新. 金属学报, 2007; 43: 1239)
[12] Lin P, Palumbo G, Erb U. Scr Mater Mater, 1996; 33: 1387
[13] Shimada M, Kokawa H, Wang Z J. Acta Mater, 2002; 50: 2331
[14] Lehoceky E M, Palumbo G, Lin P. Metall Mater Trans, 1998; 29A: 3069
[15] Palumbo G, Erb U. MRS Bull, 1999; 24: 27
[16] Watanabe T, Yamada M, Shimada S, Karashima S. Philos Mag, 1979; 40A: 667
[17] Bouchet D, Priester L. Scr Mater, 1987; 21: 475
[18] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. J Iron Steel Res, 2007; 14: 339
[19] Fang X Y, Wang W G, Qin C X, Zhou B X. Int J Mod Phys, 2009; 23B: 1110
[20] Randle V. The Role of Coincidence Site Lattice in Grain Boundary Engineering. London: Carlton House Terrace, 1999: 123
[21] Wright S I, Larsen R J. JOM, 2002; 205: 245
[22] Randle V. Scr Mater, 2001; 44: 2789
[23] Rohrer G S, Sayor D M, Dasher B E, Adams B L. Z Metall, 2004; 95: 197
[24] Sayor D M, Dasher B E, Adams B L, Rohrer G S. Metall Mater Trans, 2004; 35A: 1981
[25] Randle V, Jones R. Mater Sci Eng, 2009; A524: 134
[26] Kim C S, Hu Y, Rohrer G S, Randle V. Scr Mater, 2005; 52: 633
[27] Sayor D M, Dasher B E, Rollett A D, Rohrer G S. Acta Mater, 2004; 52: 3649
[28] Rohrer G S, Randle V, Kim C S, Hu Y. Acta Mater, 2006; 54: 4489
[29] Kim C S, Hu Y, Rohrer G S, Randle V. Scr Mater, 2005; 52: 633
[30] Sayor D M, Morawiec A, Rohrer G S. Acta Mater, 2003; 51: 3663
[31] Sayor D M, Morawiec A, Rohrer G S. Acta Mater, 2003; 51: 3675
[32] Randle V, Rohrer G S, Hu Y. Scr Mater, 2008; 58: 183
[33] Sayor D M, Dasher B E, Sano T, Rohrer G S. J Am Ceram Soc, 2004; 87: 670
[34] Wang W G. Chin J Stereology Image Anal, 2007; 12(4): 239
(王卫国. 中国体视学与图像分析, 2007; 12(4): 239)
[35] Bennett T A, Kim C S, Rohrer G S, Rollett A D. Mater Sci Forum, 2004; 467–470: 727
[36] Lejcek P, Hofmann S, Paidar V. Acta Mater, 2003; 51: 3951
[37] Lejcek P, Paidar V. Mater Sci Technol, 2005; 21: 393

[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[4] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[5] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[6] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[7] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[8] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[9] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[10] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[11] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[12] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[13] 陈吉湘,王卫国,林燕,林琛,王乾廷,戴品强. 等径角挤压和单向轧制高纯Al再结晶晶界面的取向分布*[J]. 金属学报, 2016, 52(4): 473-483.
[14] 杨文,张立峰,任英,段豪剑,张莹,肖向辉. 利用高分辨同步辐射Micro-CT定量三维表征含Ti铁素体不锈钢铸坯中氧化物夹杂*[J]. 金属学报, 2016, 52(2): 217-223.
[15] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.