Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 217-223    DOI: 10.11900/0412.1961.2015.00226
  论文 本期目录 | 过刊浏览 |
利用高分辨同步辐射Micro-CT定量三维表征含Ti铁素体不锈钢铸坯中氧化物夹杂*
杨文1,张立峰1(),任英1,段豪剑1,张莹1,肖向辉2
1 北京科技大学冶金与生态工程学院, 北京 100083
2 Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT
Wen YANG1,Lifeng ZHANG1(),Ying REN1,Haojian DUAN1,Ying ZHANG1,Xianghui XIAO2
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
全文: PDF(2888 KB)   HTML
摘要: 

采用高分辨同步辐射计算机微断层扫描技术(Micro-CT)对含Ti铁素体不锈钢铸坯中氧化物夹杂进行了三维检测, 定量分析了氧化物夹杂数量、体积和尺寸等特征在铸坯厚度方向的分布规律, 并与自动扫描电镜ASPEX的二维检测结果对比. 结果表明, Micro-CT能够更准确地实现钢中夹杂物的无损检测. Micro-CT检测到的氧化物基本都为球形, 各位置夹杂物数量随着尺寸的增加而减少. 氧化物数量密度和体积分数整体上在铸坯厚度中心最大, 并随着距厚度中心的距离增加而减小, 在铸坯表层附近达到最小值. 而氧化物平均等效直径在铸坯表层附近最大, 在内弧1/4厚度附近最小.

关键词 同步辐射Micro-CT定量三维表征Ti处理铁素体不锈钢氧化物夹杂连铸板坯    
Abstract

Non-metallic inclusions especially oxides are detrimental to the quality of ferritic stainless steel products. Accurate characterization on inclusions is conducive to further research on the inclusion control. There are some disadvantages in traditional 2D or 3D inclusion detection methods, tomography is thus employed to characterize inclusions in steel in the current work. Oxide inclusions in the slab of Ti bearing ferritic stainless steel were characterized 3 dimensionally using high resolution synchrotron micro computed tomography (Micro-CT), and the variations of quantity, volume and size of oxide inclusions along the thickness of continuous casting slab were analyzed quantitatively and compared with the 2D results detected by ASPEX, an automated scanning SEM. It was found that non-destructive detection could be well done by Micro-CT more accurately. The detected oxides by Micro-CT were mainly global, and the number of inclusions decreased with increasing size. In general, the number density and volume fraction of oxides were largest in the center of slab thickness, and decreased with the distance from center, reached the smallest value near the surface of slab. Contrarily, the average of equivalent diameter of oxide inclusions was largest near slab surface, and was smallest near quarter of thickness on the loose side.

Key wordssynchrotron radiation    Micro-CT    quantitative 3D characterization    Ti bearing ferritic stainless steel    oxide inclusion    continuous casting slab
收稿日期: 2015-04-17     
基金资助:* 国家自然科学基金项目51274034, 51334002和51404019资助

引用本文:

杨文,张立峰,任英,段豪剑,张莹,肖向辉. 利用高分辨同步辐射Micro-CT定量三维表征含Ti铁素体不锈钢铸坯中氧化物夹杂*[J]. 金属学报, 2016, 52(2): 217-223.
Wen YANG, Lifeng ZHANG, Ying REN, Haojian DUAN, Ying ZHANG, Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT. Acta Metall Sin, 2016, 52(2): 217-223.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00226      或      https://www.ams.org.cn/CN/Y2016/V52/I2/217

图1  Micro-CT设备及原理示意图
图2  铸坯取样位置示意图
图3  含Ti不锈钢铸坯中典型氧化物夹杂形貌及成分
图4  无水有机溶液电解提取的夹杂物形貌
图5  Micro-CT检测到的铸坯不同厚度位置的氧化物形貌及分布
图6  铸坯不同厚度处氧化物夹杂等效直径分布
图7  氧化物体积数量密度沿铸坯厚度变化
图8  氧化物体积分数沿铸坯厚度变化
图9  氧化物平均等效直径沿铸坯厚度变化
图10  ASPEX检测得到的≥5 μm的氧化物面积数量密度和面积分数沿铸坯厚度变化
图11  ASPEX检测得到的≥5 μm的氧化物平均尺寸沿铸坯厚度变化
[1] Zhang L F, Li Y L, Ren Y.Iron Steel, 2013; 48(11): 1
[1] (张立峰, 李燕龙, 任英. 钢铁, 2013; 48(11): 1)
[2] Zhang L F, Li Y L, Ren Y.Iron Steel, 2013; 48(12): 1
[2] (张立峰, 李燕龙, 任英. 钢铁, 2013; 48(12): 1)
[3] Ren Y, Zhang L F, Yang W.Steelmaking, 2014; 30(1): 71
[3] (任英, 张立峰, 杨文. 炼钢, 2014; 30(1): 71)
[4] Ha H Y, Park C J, Kwon H S.Corros Sci, 2007; 49: 1266
[5] Chang E, Zheng H G, Zhang L, Yang J.Shanghai Met, 2008; 30(6): 18
[5] (常锷, 郑宏光, 张丽, 杨军. 上海金属, 2008; 30(6): 18)
[6] Zhang L F, Yang W, Zhang X W, Luo Y, Liu Y.Iron Steel, 2014; 49(2): 1
[6] (张立峰, 杨文, 张学伟, 罗艳, 刘洋. 钢铁, 2014; 49(2): 1)
[7] Zhang L F, Zhang X W, Luo Y, Liu Y, Zhang Y, Yang W.In: The Chinese Society for Metals ed., Proc 9th CSM Steel Congress, Beijing: Metallurgical Industry Press, 2013: 1
[7] (张立峰, 张学伟, 罗艳, 刘洋, 张莹, 杨文. 见: 中国金属学会编, 第九届中国钢铁年会论文集, 北京: 冶金工业出版社, 2013: 1)
[8] Asghar Z, Requena G, Degischer H P, Cloetens P.Acta Mater, 2009; 57: 4125
[9] Maire E, Grenier J C, Daniel D, Baldacci A, Klöcker H, Bigot A.Scr Mater, 2006; 55: 123
[10] Nagasekhar A V, Cáceres C H, Kong C.Mater Charact, 2010; 61: 1035
[11] Tiryakioğlu M.Mater Sci Eng, 2008; A473: 1
[12] Maire E.Annual Rev Mater Res, 2012; 42: 163
[13] Meidani H, Desbiolles J L, Jacot A, Rappaz M.Acta Mater, 2012; 60: 2518
[14] Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849
[15] Wan Q, Zhao H D, Zou C.Acta Metall Sin, 2013; 49: 284
[15] (万谦, 赵海东, 邹纯. 金属学报, 2013; 49: 284)
[16] Yi J, Gao Y, Lee P, Flower H, Lindley T.Metall Mater Trans, 2003; 34A: 1879
[17] Li P, Lee P, Lindley T, Maijer D, Davis G, Elliott J.Adv Eng Mater, 2006; 8: 476
[18] Wan Q, Zhao H D, Zou C.ISIJ Int, 2014; 54: 511
[19] Rashed H, Robson J, Bate P, Davis B.Mater Sci Eng, 2011; A528: 2610
[20] Nicoletto G, Konečná R, Fintova S.Int J Fatigue, 2012; 41: 39
[21] Li M, Wang L, Almer J D.Acta Mater, 2014; 76: 381
[22] Zhang H, Toda H, Qu P C, Sakaguchi Y, Kobayashi M, Uesugi K, Suzuki Y.Acta Mater, 2009; 57: 3287
[23] Ferrié E, Buffière J Y, Ludwig W, Gravouil A, Edwards L.Acta Mater, 2006; 54: 1111
[24] Ludwig W, Buffiere J, Savelli S, Cloetens P.Acta Mater, 2003; 51: 585
[25] Li T, Shimasaki S, Taniguchi S, Uesugi K, Narita S.ISIJ Int, 2013; 53: 1943
[26] Fang K M, Ni R M.Metall Trans, 1986; 17A: 315
[27] Yang W, Zhang L F, Wang X H, Ren Y, Liu X F, Shan Q L.ISIJ Int, 2013; 53: 1401
[1] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[2] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[3] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[4] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[5] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[6] 毕成, 郭志鹏, LIOTTI E, 熊守美, GRANT P S. 铝合金凝固过程枝晶破碎现象的定量化研究*[J]. 金属学报, 2015, 51(6): 677-684.
[7] 喻程, 吴圣川, 胡雅楠, 张卫华, 付亚楠. 铝合金熔焊微气孔的三维同步辐射X射线成像*[J]. 金属学报, 2015, 51(2): 159-168.
[8] 安同邦,田志凌,单际国,魏金山. 保护气对1000 MPa级熔敷金属组织及力学性能的影响*[J]. 金属学报, 2015, 51(12): 1489-1499.
[9] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[10] 陈雨来, 张泰然, 王一德, 李静媛. O, N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响*[J]. 金属学报, 2014, 50(8): 905-912.
[11] 林启勇; 朱苗勇 . 连铸板坯轻压下过程压下率理论模型及其分析[J]. 金属学报, 2007, 43(8): 847-850 .
[12] 林启勇; 朱苗勇 . 不同钢种连铸板坯轻压下率的规律分析[J]. 金属学报, 2007, 43(12): 1297-1300 .
[13] 林启勇; 朱苗勇 . 连铸板坯轻压下过程中的压下效率分析[J]. 金属学报, 2007, 43(12): 1301-1304 .
[14] 王凤平;王佩璇;方正知;崔明启;姜晓明;马宏骥. Mo/SiO_2软X射线多层膜反射镜的界面分析[J]. 金属学报, 1997, 33(7): 737-741.