|
|
综述:合金设计中物理模型与人工智能的集成与发展 |
王晨充, 徐伟( ) |
东北大学 数字钢铁全国重点实验室 沈阳 110819 |
|
Overview: Integration and Development of Physical Models and Artificial Intelligence in Alloy Design |
WANG Chenchong, XU Wei( ) |
State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China |
引用本文:
王晨充, 徐伟. 综述:合金设计中物理模型与人工智能的集成与发展[J]. 金属学报, 2025, 61(4): 541-560.
Chenchong WANG,
Wei XU.
Overview: Integration and Development of Physical Models and Artificial Intelligence in Alloy Design[J]. Acta Metall Sin, 2025, 61(4): 541-560.
1 |
Liao M Q, Wang Y, Wang Y, et al. Zentropy theory: Bridging materials gene to materials properties [J]. Acta Metall. Sin., 2024, 60: 1379
doi: 10.11900/0412.1961.2024.00147
|
1 |
廖名情, 王 毅, 王 义 等. 叠熵理论: 从材料基因到材料性能 [J]. 金属学报, 2024, 60: 1379
doi: 10.11900/0412.1961.2024.00147
|
2 |
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
2 |
谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
3 |
Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
|
4 |
Peng G C Y, Alber M, Tepole A B, et al. Multiscale modeling meets machine learning: What can we learn? [J]. Arch. Comput. Methods Eng., 2021, 28: 1017
|
5 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
5 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
6 |
Zhang X, Wang L M, Helwig J, et al. Artificial intelligence for science in quantum, atomistic, and continuum systems [DB/OL]. arXiv: 2307. 08423, 2023
|
7 |
Cui P, Athey S. Stable learning establishes some common ground between causal inference and machine learning [J]. Nat. Mach. Intell., 2022, 4: 110
|
8 |
Zhong X T, Gallagher B, Liu S S, et al. Explainable machine learning in materials science [J]. npj Comput. Mater., 2022, 8: 204
|
9 |
Shen C G, Wang C C, Rivera-Díaz-del-Castillo P E J, et al. Discovery of marageing steels: Machine learning vs. physical metallurgical modelling [J]. J. Mater. Sci. Technol., 2021, 87: 258
|
10 |
Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
|
11 |
Guo A X Y, Cheng L J, Zhan S, et al. Biomedical applications of the powder‐based 3D printed titanium alloys: A review [J]. J. Mater. Sci. Technol., 2022, 125: 252
doi: 10.1016/j.jmst.2021.11.084
|
12 |
Cisternas L A, Lucay F A, Botero Y L. Trends in modeling, design, and optimization of multiphase systems in minerals processing [J]. Minerals, 2020, 10: 22
|
13 |
Huang L, Ruan S, Xing Y C, et al. A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods [J]. Med. Image Anal., 2024, 97: 103223
|
14 |
Szymanski N J, Rendy B, Fei Y X, et al. An autonomous laboratory for the accelerated synthesis of novel materials [J]. Nature, 2023, 624: 86
|
15 |
Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
doi: 10.1038/ncomms11241
pmid: 27079901
|
16 |
Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on Bayesian optimization sampling [J]. Acta Metall. Sin., 2021, 57: 797
doi: 10.11900/0412.1961.2020.00298
|
16 |
赵婉辰, 郑 晨, 肖 斌 等. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化 [J]. 金属学报, 2021, 57: 797
doi: 10.11900/0412.1961.2020.00298
|
17 |
Gawlikowski J, Tassi C R N, Ali M, et al. A survey of uncertainty in deep neural networks [J]. Artif. Intell. Rev., 2023, 56(suppl.1) : 1513
|
18 |
Kurz A, Hauser K, Mehrtens H A, et al. Uncertainty estimation in medical image classification: Systematic review [J]. JMIR Med. Inf., 2022, 10: e36427
|
19 |
Jospin L V, Laga H, Boussaid F, et al. Hands-on Bayesian neural networks—A tutorial for deep learning users [J]. IEEE Comput. Intell. Mag., 2022, 17: 29
|
20 |
Venkatraman A, de Oca Zapiain D M, Kalidindi S R. Reduced-order models for ranking damage initiation in dual-phase composites using Bayesian neural networks [J]. JOM, 2020, 72: 4359
doi: 10.1007/s11837-020-04387-y
|
21 |
Wu S W, Zhou X G, Chen Q Y, et al. Development of constitutive models for extrapolative prediction of Nb-Ti micro alloyed steel [J]. Steel Res. Int., 2017, 88: 1700082
|
22 |
Muth A, Venkatraman A, John R, et al. Neighborhood spatial correlations and machine learning classification of fatigue hot-spots in Ti-6Al-4V [J]. Mech. Mater., 2023, 182: 104679
|
23 |
He Z C, Huo S L, Li E, et al. Data-driven approach to characterize and optimize properties of carbon fiber non-woven composite materials [J]. Compos. Struct., 2022, 297: 115961
|
24 |
Norris C, Ayyaswamy A, Vishnugopi B S, et al. Uncertainty quantification and propagation in lithium-ion battery electrodes using Bayesian convolutional neural networks [J]. Energy Storage Mater., 2024, 67: 103251
|
25 |
Ali S, Abuhmed T, El-Sappagh S, et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence [J]. Inf. Fusion, 2023, 99: 101805
|
26 |
Hassija V, Chamola V, Mahapatra A, et al. Interpreting black-box models: A review on explainable artificial intelligence [J]. Cogn. Comput., 2024, 16: 45
|
27 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [A]. 31st International Conference on Neural Information Processing Systems [C]. Long Beach: Curran Associates Inc., 2017
|
28 |
Xu P C, Ji X B, Li M J, et al. Small data machine learning in materials science [J]. npj Comput. Mater., 2023, 9: 42
|
29 |
Ikram S T, Cherukuri A K. Improving accuracy of intrusion detection model using PCA and optimized SVM [J]. J. Comput. Inf. Technol., 2016, 24: 133
|
30 |
He F, Zhang L Y. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network [J]. J. Process Control, 2018, 66: 51
|
31 |
Xue J L, Chen Y C, Li O, et al. Classification and identification of unknown network protocols based on CNN and T-SNE [J]. J. Phys.: Conf. Ser., 2020, 1617: 012071
|
32 |
Gallos I K, Gkiatis K, Matsopoulos G K, et al. ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia [J]. AIMS Neurosci., 2021, 8: 295
doi: 10.3934/Neuroscience.2021016
pmid: 33709030
|
33 |
Jiang L, Fu H D, Zhang H T, et al. Physical mechanism interpretation of polycrystalline metals' yield strength via a data-driven method: A novel Hall-Petch relationship [J]. Acta Mater., 2022, 231: 117868
|
34 |
Baskes M I. The status role of modeling and simulation in materials science and engineering [J]. Curr. Opin. Solid State Mater. Sci., 1999, 4: 273
|
35 |
Elliott J A. Novel approaches to multiscale modelling in materials science [J]. Int. Mater. Rev., 2011, 56: 207
|
36 |
Chen Z, Haykin S. On different facets of regularization theory [J]. Neural Comput., 2002, 14: 2791
pmid: 12487794
|
37 |
Lu Q, Xu W, van der Zwaag S. The design of a compositionally robust martensitic creep-resistant steel with an optimized combination of precipitation hardening and solid-solution strengthening for high-temperature use [J]. Acta Mater., 2014, 77: 310
|
38 |
Wang C C, Wei X L, Ren D, et al. High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm [J]. Mater. Des., 2022, 213: 110326
|
39 |
Li Y, Martín D S, Wang J L, et al. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91: 200
doi: 10.1016/j.jmst.2021.03.020
|
40 |
Stormvinter A, Borgenstam A, Ågren J. Thermodynamically based prediction of the martensite start temperature for commercial steels [J]. Metall. Mater. Trans., 2012, 43A: 3870
|
41 |
Lee S J, Park K S. Prediction of martensite start temperature in alloy steels with different grain sizes [J]. Metall. Mater. Trans., 2013, 44A: 3423
|
42 |
Rahaman M, Mu W Z, Odqvist J, et al. Machine learning to predict the martensite start temperature in steels [J]. Metall. Mater. Trans., 2019, 50A: 2081
|
43 |
Wang C C, Zhu K Y, Hedström P, et al. A generic and extensible model for the martensite start temperature incorporating thermodynamic data mining and deep learning framework [J]. J. Mater. Sci. Technol., 2022, 128: 31
doi: 10.1016/j.jmst.2022.04.014
|
44 |
Ghosh G, Olson G B. Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
|
45 |
Lu Q, Liu S L, Li W, et al. Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels [J]. Mater. Des., 2020, 192: 108696
|
46 |
Kannan R, Nandwana P. Accelerated alloy discovery using synthetic data generation and data mining [J]. Scr. Mater., 2023, 228: 115335
|
47 |
Zhang S J, Yi W, Zhong J, et al. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving simultaneous enhancement in strength and ductility [J]. Materials, 2023, 16: 306
|
48 |
Zou H, Tian Y Y, Zhang L G, et al. Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys [J]. Rare Met., 2024, 43: 309
|
49 |
Fu H, Gao T C, Gao J B, et al. Breaking hardness and electrical conductivity trade-off in Cu-Ti alloys through machine learning and Pareto front [J]. Mater. Res. Lett., 2024, 12: 580
|
50 |
Zhang W L, Tang Y, Gao J H, et al. Determination of hardness and Young's modulus in fcc Cu-Ni-Sn-Al alloys via high-throughput experiments, CALPHAD approach and machine learning [J]. J. Mater. Res. Technol., 2024, 30: 5381
|
51 |
Liu X L, Zhang J X, Pei Z R. Machine learning for high-entropy alloys: Progress, challenges and opportunities [J]. Prog. Mater. Sci., 2023, 131: 101018
|
52 |
Xu B, Yin H Q, Jiang X, et al. Data-driven design of Ni-based turbine disc superalloys to improve yield strength [J]. J. Mater. Sci. Technol., 2023, 155: 175
doi: 10.1016/j.jmst.2023.01.032
|
53 |
Lu S, Zou M, Zhang X R, et al. Data-driven “cross-component” design and optimization of γ′-strengthened Co-based superalloys [J]. Adv. Eng. Mater., 2023, 25: 2201257
|
54 |
Trehern W, Ortiz-Ayala R, Atli K C, et al. Data-driven shape memory alloy discovery using Artificial Intelligence Materials Selection (AIMS) framework [J]. Acta Mater., 2022, 228: 117751
|
55 |
Zeng Y Z, Man M R, Bai K W, et al. Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method [J]. Acta Mater., 2022, 231: 117865
|
56 |
Jin X Z, Luo H, Wang X F, et al. Data mining accelerated the design strategy of high-entropy alloys with the largest hardness based on genetic algorithm optimization [J]. MGE Adv., 2024, 2: e49
|
57 |
Vazquez G, Singh P, Sauceda D, et al. Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys [J]. Acta Mater., 2022, 232: 117924
|
58 |
Wen C, Wang C X, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning [J]. Acta Mater., 2021, 212: 116917
|
59 |
Li Z, Nash W T, O'Brien S P, et al. cardiGAN: A generative adversarial network model for design and discovery of multi principal element alloys [J]. J. Mater. Sci. Technol., 2022, 125: 81
doi: 10.1016/j.jmst.2022.03.008
|
60 |
Zhang H T, Fu H D, Zhu S C, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys [J]. Acta Mater., 2021, 215: 117118
|
61 |
He J J, Li J J, Liu C B, et al. Machine learning identified materials descriptors for ferroelectricity [J]. Acta Mater., 2021, 209: 116815
|
62 |
Hartnett T Q, Sharma V, Garg S, et al. Accelerated design of MTX alloys with targeted magnetostructural properties through interpretable machine learning [J]. Acta Mater., 2022, 231: 117891
|
63 |
Wang C C, Zhang Z, Jing X Y, et al. Optimization of multistage femtosecond laser drilling process using machine learning coupled with molecular dynamics [J]. Opt. Laser Technol., 2022, 156: 108442
|
64 |
Zhang Z, Yang Z N, Wang C C, et al. Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model [J]. J. Intell. Manuf., 2024, 35: 449
|
65 |
Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning [J]. Acta Mater., 2022, 226: 117612
|
66 |
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940
pmid: 36201584
|
67 |
Zou C X, Li J S, Wang W Y, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys [J]. Acta Mater., 2021, 202: 211
|
68 |
Holm E A, Cohn R, Gao N, et al. Overview: Computer vision and machine learning for microstructural characterization and analysis [J]. Metall. Mater. Trans., 2020, 51A: 5985
|
69 |
Müller M, Stiefel M, Bachmann B I, et al. Overview: Machine learning for segmentation and classification of complex steel microstructures [J]. Metals, 2024, 14: 553
|
70 |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [A]. 3rd International Conference on Learning Representations [C]. San Diego, May 7-9, 2015
|
71 |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [A]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention [C]. Munich: Springer, 2015
|
72 |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [A]. 2016 IEEE Conference on Computer Vision and Pattern Recognition [C]. Las Vegas: IEEE, 2016: 770
|
73 |
Shen C G, Wang C C, Huang M H, et al. A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning [J]. J. Mater. Sci. Technol., 2021, 93: 191
doi: 10.1016/j.jmst.2021.04.009
|
74 |
Kunselman C, Sheikh S, Mikkelsen M, et al. Microstructure classification in the unsupervised context [J]. Acta Mater., 2022, 223: 117434
|
75 |
Ma X D, Zhang Y Q, Wang C C, et al. Alloy microstructure segmentation through SAM and domain knowledge without extra training [J]. Scr. Mater., 2025, 260: 116581
|
76 |
Ren D, Wang C C, Wei X L, et al. Building a quantitative composition-microstructure-property relationship of dual-phase steels via multimodal data mining [J]. Acta Mater., 2023, 252: 118954
|
77 |
Zhao P L, Wang Y W, Jiang B Y, et al. Neural network modeling of titanium alloy composition-microstructure-property relationships based on multimodal data [J]. Mater. Sci. Eng., 2023, A879: 145202
|
78 |
Wang C C, Ren D, Li Y, et al. Prediction of deformation-induced martensite start temperature by convolutional neural network with dual mode features [J]. Materials, 2022, 15: 3495
|
79 |
Han S Y, Wang C C, Lai Q Q, et al. Fitting-free mechanical response prediction in dual-phase steels by crystal plasticity theory guided deep learning [J]. Acta Mater., 2025, Available online, 120936
|
80 |
Jin L C, Tan F X, Jiang S M. Generative adversarial network technologies and applications in computer vision [J]. Comput. Intel. Neurosci., 2020, 2020: 1459107
|
81 |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets [A]. Proceedings of the 28th International Conference on Neural Information Processing Systems [C]. Montreal: MIT Press, 2014
|
82 |
Qian C, Tan R K, Ye W J. Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method [J]. Acta Mater., 2022, 225: 117548
|
83 |
Narikawa R, Fukatsu Y, Wang Z L, et al. Generative adversarial networks-based synthetic microstructures for data-driven materials design [J]. Adv. Theory Simul., 2022, 5: 2100470
|
84 |
Long T, Zhang Y X, Fortunato N M, et al. Inverse design of crystal structures for multicomponent systems [J]. Acta Mater., 2022, 231: 117898
|
85 |
Yang X. A machine learning-based approach for materials microstructure analysis and prediction [D]. Houston City: Rice University, 2020
|
86 |
Cao Z H, Liu Q, Liu Q C, et al. A machine learning method to quantitatively predict alpha phase morphology in additively manufactured Ti-6Al-4V [J]. npj Comput. Mater., 2023, 9: 195
|
87 |
Yang Z J, Li X L, Brinson L C, et al. Microstructural materials design via deep adversarial learning methodology [J]. J. Mech. Des., 2018, 140: 111416
|
88 |
Kingma D P, Welling M. Auto-encoding variational Bayes [A]. 2nd International Conference on Learning Representations [C]. Banff, April 14-16, 2014
|
89 |
Pei Z R, Rozman K A, Doğan Ö N, et al. Machine-learning microstructure for inverse material design [J]. Adv. Sci., 2021, 8: 2101207
|
90 |
Ma X D, Zhang Y Q, Wang C C, et al. Creating a microstructure latent space with rich material information for multiphase alloy design [DB/OL]. arXiv: 2409. 02648, 2024
|
91 |
Jha D, Choudhary K, Tavazza F, et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning [J]. Nat. Commun., 2019, 10: 5316
doi: 10.1038/s41467-019-13297-w
pmid: 31757948
|
92 |
Yamada H, Liu C, Wu S, et al. Predicting materials properties with little data using shotgun transfer learning [J]. ACS Cent. Sci., 2019, 5: 1717
|
93 |
Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
|
94 |
Jiang L, Zhang Z H, Hu H, et al. A rapid and effective method for alloy materials design via sample data transfer machine learning [J]. npj Comput. Mater., 2023, 9: 26
|
95 |
Wei X L, Zhang C, Han S Y, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network [J]. Int. J. Fatigue, 2022, 163: 107050
|
96 |
Cuomo S, Di Cola V S, Giampaolo F, et al. Scientific machine learning through physics-informed neural networks: Where we are and what's next [J]. J. Sci. Comput., 2022, 92: 88
|
97 |
Liu C, Wu H A. A variational formulation of physics-informed neural network for the applications of homogeneous and heterogeneous material properties identification [J]. Int. J. Appl. Mech., 2023, 15: 23500655
|
98 |
Jin H X, Zhang E R, Espinosa H D. Recent advances and applications of machine learning in experimental solid mechanics: A review [J]. Appl. Mech. Rev., 2023, 75: 061001
|
99 |
Zhang L J, Li K W, Wang H, et al. MFC-PINN: A method to improve the accuracy and robustness of acoustic emission source planar localization [J]. Measurement, 2024, 235: 114995
|
100 |
Liu T Y. AI for Science: Pursuing the brightest side of human intelligence [EB/OL]. (2023-01-05).
|
100 |
刘铁岩. AI for Science: 追求人类智能最光辉的一面[EB/OL]. (2023-01-05).
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|