Please wait a minute...
金属学报  2024, Vol. 60 Issue (10): 1379-1387    DOI: 10.11900/0412.1961.2024.00147
  综述 本期目录 | 过刊浏览 |
叠熵理论:从材料基因到材料性能
廖名情1, 王毅2(), 王义3, 商顺利3, 刘梓葵3()
1 江苏科技大学 材料科学与工程学院 镇江 212100
2 西北工业大学 凝固技术国家重点实验室 西安 710072
3 Department of Materials Science and Engineering, the Pennsylvania State University, University Park, PA, 16802, USA
Zentropy Theory: Bridging Materials Gene to Materials Properties
LIAO Mingqing1, WANG William Yi2(), WANG Yi3, SHANG Shun-Li3, LIU Zi-Kui3()
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
3 Department of Materials Science and Engineering, the Pennsylvania State University, University Park, PA, 16802, USA
引用本文:

廖名情, 王毅, 王义, 商顺利, 刘梓葵. 叠熵理论:从材料基因到材料性能[J]. 金属学报, 2024, 60(10): 1379-1387.
Mingqing LIAO, William Yi WANG, Yi WANG, Shun-Li SHANG, Zi-Kui LIU. Zentropy Theory: Bridging Materials Gene to Materials Properties[J]. Acta Metall Sin, 2024, 60(10): 1379-1387.

全文: PDF(1381 KB)   HTML
摘要: 

熵是科学中一个非常重要的概念,从量子到天文,无处不在。基于统计力学,综合量子力学密度泛函理论和热力学,刘梓葵教授团队建立了关于系统总熵的理论:叠熵理论。该理论以Gibbs统计力学中的微观组态作为材料的基因,把密度泛函理论中的基态作为最基本的微观组态,通过基态的内部自由度遍历所有的微观组态。叠熵理论定义系统总熵为每个微观组态熵的加权平均再加上微观组态之间的Gibbs统计熵。本文系统介绍了叠熵理论的基础方程与原理,简单概述了叠熵理论的典型应用,包括磁性转变、铁电转变、热膨胀机制以及临界现象预测,并对叠熵理论从理论发展、软件生态构建、高通量计算以及与人工智能集成等方面进行了展望。

关键词 叠熵理论热力学材料基因工程热膨胀机制铁电转变温度有序-无序转变    
Abstract

Entropy is an important concept in science and is ubiquitous from quantum to astronomy. By integrating statistical mechanics, quantum mechanics, and thermodynamics, Professor Zi-Kui Liu proposed the zentropy theory, which stacks entropy over configurations. The zentropy theory takes the configurations in Gibbs' statistical mechanics of a given ensemble as the material gene with the ground state as the basic configuration and additional configurations ergodically derived from its internal degrees of freedom. In the zentropy theory, the total entropy of a system is defined as the weighted average of the entropy of each configuration plus the statistical entropy among all configurations. In this paper, the basic equations and principles of the zentropy theory are introduced, and their typical applications, including magnetic and ferroelectric transformations, thermal expansion mechanisms, and critical phenomenon prediction are outlined. Furthermore, a perspective on the development of this theory, software ecosystems, high-throughput computing, and integration with artificial intelligence is provided in this study.

Key wordszentropy theory    thermodynamics    materials genome engineering    thermal expansion mechanism    ferroelectric transition temperature    order-disorder transition
收稿日期: 2024-05-08     
ZTFLH:  O414  
基金资助:江苏省自然科学基金项目(BK20230673);江苏省双创博士人才项目(JSSCBS20221270)
通讯作者: 王 毅,wywang@nwpu.edu.cn,主要从事极端条件先进材料的材料基因工程&集成计算材料工程的研究;
刘梓葵,zxl15@psu.edu,主要从事材料热力学、动力学、晶体学以及材料基因组的研究
Corresponding author: WANG William Yi, professor, Tel: (029)88460294, E-mail: wywang@nwpu.edu.cn;
LIU Zi-Kui, professor, Tel: (814)8651934, E-mail: zxl15@psu.edu
作者简介: 廖名情,男,1992年生,博士
图1  多尺度熵示意图
图2  叠熵理论示意图
PropertyStatistical mechanicsZentropy framework
EntropyS=-kBkpklnpkS=kpkSk-kBkpklnpk
Free energyF=kpkEk+kBTkpklnpkF=kpkFk+kBTkpklnpk
Partition functionZ=exp(-FkBT)=kexp(-EkkBT)Z=exp(-FkBT)=kexp(-FkkBT)
Probabilitypk=ZkZ=exp(-Ek-FkBT)pk=ZkZ=exp(-Fk-FkBT)
表1  叠熵理论框架与经典统计力学下热力学物理量的比较[41]
图3  不同微观组态0 K下的体积-能量曲线[30]
图4  不同压强下的温度-体积相图[45]
图5  PbTiO3各个组态概率随温度的变化[47]
图6  通过熵预测的Fe3Pt无序程度(fDoDS)随温度的变化[46]
1 Gan Y. Research on the innovative development of new materials science and technology in China [J]. Engineering, 2024, 32: 10
2 Xie M, Gan Y, Wang H. Research on new material power strategy by 2035 [J]. Strategic Study CAE, 2020, 22(5): 1
2 谢 曼, 干 勇, 王 慧. 面向2035的新材料强国战略研究 [J]. 中国工程科学, 2020, 22(5): 1
3 Liu Z K. Perspective on materials genome [J]. Chin. Sci. Bull., 2013, 58: 3618
3 刘梓葵. 关于材料基因组的基本观点及展望 [J]. 科学通报, 2013, 58: 3618
4 National Science and Technology Council. Materials genome initiative for global competitiveness [EB/OL]. (2011-06-24).
5 National Science and Technology Council. Materials genome initiative strategic plan [EB/OL]. (2014-12-04).
6 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta. Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
6 宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
7 National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M]. Washington, D.C.: The National Academies Press, 2008: 9
8 Wang W Y, Yin J L, Chai Z X, et al. Big data-assisted digital twins for the smart design and manufacturing of advanced materials: From atoms to products [J]. J. Mater. Inf., 2022, 2: 1
9 Liu Z K, Chen L Q, Raghavan P, et al. An integrated framework for multi-scale materials simulation and design [J]. J. Comput. Aided Mater. Des., 2004, 11: 183
10 Liu X, Furrer D, Kosters J, et al. Vision 2040 : A roadmap for integrated, multiscale modeling and simulation of materials and systems [EB/OL]. (2018-03-22).
11 National Academies of Sciences, Engineering, and Medicine. NSF Efforts to Achieve the Nation's Vision for the Materials Genome Initiative: Designing Materials to Revolutionize and Engineer Our Future (DMREF) [M]. Washington, D.C.: The National Academies Press, 2023: 57
12 Xie J X. Prospects of materials genome engineering frontiers [J]. Mater. Genome Eng. Adv., 2023, 1: e17
13 Xie J X, Su Y J, Zhang D W, et al. A vision of materials genome engineering in China [J]. Engineering, 2022, 10: 10
14 Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
15 Lu Z C, Zhang Y B, Li W Y, et al. Materials genome strategy for metallic glasses [J]. J. Mater. Sci. Technol., 2023, 166: 173
doi: 10.1016/j.jmst.2023.04.074
16 Wang G J, Peng L Y, Li K Q, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
17 Wang G J, Li K Q, Peng L Y, et al. High-throughput automatic integrated material calculations and data management intelligent platform and the application in novel alloys [J]. Acta. Metall. Sin., 2022, 58: 75
doi: 10.11900/0412.1961.2021.00041
17 王冠杰, 李开旗, 彭力宇 等. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58: 75
doi: 10.11900/0412.1961.2021.00041
18 Chong X Y, Yu W, Liang Y X, et al. Understanding oxidation resistance of Pt-based alloys through computations of Ellingham diagrams with experimental verifications [J]. J. Mater. Inf., 2023, 3: 21
19 Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
20 Liu Y L, Niu C, Wang Z, et al. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57: 113
doi: 10.1016/j.jmst.2020.01.067
21 E W N. AI helps to establish a new paradigm for scientific research [J]. Bull. Chin. Acad. Sci., 2024, 39(1): 10
21 鄂维南. AI助力打造科学研究新范式 [J]. 中国科学院院刊, 2024, 39(1): 10
22 Li G J. AI4R: The fifth scientific research paradigm [J]. Bull. Chin. Acad. Sci., 2024, 39: 1
22 李国杰. 智能化科研(AI4R):第五科研范式 [J]. 中国科学院院刊, 2024, 39: 1
23 Ågren J. The materials genome and CALPHAD [J]. Chin. Sci. Bull., 2013, 58: 3633
23 Ågren J. 材料基因组与相图计算 [J]. 科学通报, 2013, 58: 3633
24 Wang S Q, Ye H Q. First-principles calculation of crystalline materials genome [J]. Chin. Sci. Bull., 2013, 58: 3623
24 王绍青, 叶恒强. 晶体材料基因组问题第一原理计算研究 [J]. 科学通报, 2013, 58: 3623
25 Liu Z K. Computational thermodynamics and its applications [J]. Acta Mater., 2020, 200: 745
26 Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics [J]. J. Phase Equilib. Diffus., 2009, 30: 517
27 Olson G B, Liu Z K. Genomic materials design: CALculation of PHAse Dynamics [J]. Calphad, 2023, 82: 102590
28 Liu Z K. Thermodynamics and its prediction and CALPHAD modeling: Review, state of the art, and perspectives [J]. Calphad, 2023, 82: 102580
29 Campbell C E, Kattner U R, Liu Z K. File and data repositories for next generation CALPHAD [J]. Scr. Mater., 2014, 70: 7
30 Liu Z K, Wang Y, Shang S L. Zentropy theory for positive and negative thermal expansion [J]. J. Phase Equilib. Diffus., 2022, 43: 598
31 Liu Z K. Building materials genome from ground‐state configuration to engineering advance [J]. Mater. Genome Eng. Adv., 2023, 1: e15
32 Liu Z K, Hew N L E, Shang S L. Zentropy theory for accurate prediction of free energy, volume, and thermal expansion without fitting parameters [J]. Microstructures, 2024, 4: 2024009
33 Mooraj S, Chen W. A review on high-throughput development of high-entropy alloys by combinatorial methods [J]. J. Mater. Inf., 2023, 3: 4
34 Jiang B B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance [J]. Science, 2021, 371: 830
doi: 10.1126/science.abe1292 pmid: 33602853
35 Liu Y, Lu Y H, Wang W Y, et al. Effects of solutes on thermodynamic properties of (TMZrU)C (TM = Ta, Y) medium-entropy carbides: A first-principles study [J]. J. Mater. Inf., 2023, 3: 17
36 Liao M Q, Gong H S, Qu N, et al. CALPHAD aided mechanical properties screening in full composition space of NbC-TiC-VC-ZrC ultra-high temperature ceramics [J]. Int. J. Refract. Met. Hard Mater., 2023, 113: 106191
37 Wang J, Chong X Y, Lv L, et al. High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties [J]. J. Mater. Sci. Technol., 2023, 157: 98
38 Chen L X, Chen Z W, Yao X, et al. High-entropy alloy catalysts: High-throughput and machine learning-driven design [J]. J. Mater. Inf., 2022, 2: 19
39 Ceder G. A derivation of the Ising model for the computation of phase diagrams [J]. Comput. Mater. Sci., 1993, 1: 144
40 Liu Z K. Theory of cross phenomena and their coefficients beyond Onsager theorem [J]. Mater. Res. Lett., 2022, 10: 393
41 Liu Z K. Quantitative predictive theories through integrating quantum, statistical, equilibrium, and nonequilibrium thermodynamics [J]. J. Phys.: Condens. Matter., 2024, 36: 343003
42 Liu Z K. On Gibbs Equilibrium and hillert nonequilibrium thermodynamics [DB/OL]. arXiv: 2402. 14231, 2024
43 Wang Y, Liao M Q, Bocklund B J, et al. DFTTK: Density functional theory toolKit for high-throughput lattice dynamics calculations [J]. Calphad, 2021, 75: 102355
44 Liu Z K, Li B, Lin H. Multiscale entropy and its implications to critical phenomena, emergent behaviors, and information [J]. J. Phase Equilib. Diffus., 2019, 40: 508
45 Liu Z K, Wang Y, Shang S L. Thermal expansion anomaly regulated by entropy [J]. Sci. Rep., 2014, 4: 7043
46 Shang S L, Wang Y, Liu Z K. Quantifying the degree of disorder and associated phenomena in materials through zentropy: Illustrated with Invar Fe3Pt [J]. Scr. Mater., 2023, 225: 115164
47 Liu Z K, Shang S L, Du J L, et al. Parameter-free prediction of phase transition in PbTiO3 through combination of quantum mechanics and statistical mechanics [J]. Scr. Mater., 2023, 232: 115480
48 Liang E J, Sun Q, Yuan H L, et al. Negative thermal expansion: Mechanisms and materials [J]. Front. Phys., 2021, 16: 53302
49 Zhou C, Tang Z Y, Kong X Q, et al. High-performance zero thermal expansion in Al metal matrix composites [J]. Acta Mater., 2024, 275: 120076
50 Liao M Q, Wang Y, Wang F J, et al. Unexpected low thermal expansion coefficients of pentadiamond [J]. Phys. Chem. Chem. Phys., 2022, 24: 23561
51 Wang Y, Hector Jr L G, Zhang H, et al. A thermodynamic framework for a system with itinerant-electron magnetism [J]. J. Phys.: Condens. Matter., 2009, 21: 326003
52 Wang Y, Shang S L, Zhang H, et al. Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype [J]. Philos. Mag. Lett., 2010, 90: 851
53 Shang S L, Wang Y, Liu Z K. Thermodynamic fluctuations between magnetic states from first-principles phonon calculations: The case of bcc Fe [J]. Phys. Rev., 2010, 82B: 014425
54 Shang S L, Saal J E, Mei Z G, et al. Magnetic thermodynamics of fcc Ni from first-principles partition function approach [J]. J. Appl. Phys., 2010, 108: 123514
55 Liu Z K, Wang Y, Shang S L. Origin of negative thermal expansion phenomenon in solids [J]. Scr. Mater., 2011, 65: 664
56 Wang Y, Hector Jr L G, Zhang H, et al. Thermodynamics of the Ce γ-α transition: Density-functional study [J]. Phys. Rev, 2008, 78B: 104113
57 Li Y L, Hu S Y, Liu Z K, et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films [J]. Acta Mater., 2002, 50: 395
58 Meyer B, Vanderbilt D. Ab initio study of ferroelectric domain walls in PbTiO3 [J]. Phys. Rev., 2002, 65B: 104111
59 Fang H Z, Wang Y, Shang S L, et al. Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTiO3 [J]. Phys. Rev., 2015, 91B: 024104
60 Du J L, Malyi O I, Shang S L, et al. Density functional thermodynamic description of spin, phonon and displacement degrees of freedom in antiferromagnetic-to-paramagnetic phase transition in YNiO3 [J]. Mater. Today Phys., 2022, 27: 100805
61 Du J L, Zhang Z L, Shang S L, et al. Underpinnings behind the magnetic order-to-disorder transition and property anomaly of disproportionated insulating samarium nickelate [J]. Acta Mater., 2024, 268: 119783
62 Liu Z K, Shang S L. Revealing symmetry-broken superconducting configurations by density functional theory [DB/OL]. arXiv: 2404. 00719, 2024
63 Hong Q J, Liu Z K. A generalized approach for rapid entropy calculation of liquids and solids [DB/OL]. arXiv: 2403. 19872, 2024
64 Bocklund B, Otis R, Egorov A, et al. ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: Application to Cu-Mg [J]. MRS Commun., 2019, 9: 618
doi: 10.1557/mrc.2019.59
65 Otis R, Liu Z K. pycalphad: CALPHAD-based computational thermodynamics in python [J]. J. Open Res. Softw., 2017, 5: 1
66 Paulson N H, Bocklund B J, Otis R A, et al. Quantified uncertainty in thermodynamic modeling for materials design [J]. Acta Mater., 2019, 174: 9
doi: 10.1016/j.actamat.2019.05.017
67 Peng J, Lee S, Williams A, et al. Advanced data science toolkit for non-data scientists—A user guide [J]. Calphad, 2020, 68: 101733
68 Krajewski A M, Siegel J W, Xu J, et al. Extensible structure-informed prediction of formation energy with improved accuracy and usability employing neural networks [J]. Comput. Mater. Sci., 2022, 208: 111254
69 Liu Z K. Ocean of data: Integrating first-principles calculations and CALPHAD modeling with machine learning [J]. J. Phase Equilib. Diffus., 2018, 39: 635
70 Liu Z K. View and comments on the data ecosystem: “Ocean of data” [J]. Engineering, 2020, 6: 604
[1] 张宇, 吴盼, 贾东昇, 黄林科, 贾晓晴, 刘峰. 基于稳定性的第三代先进高强钢设计[J]. 金属学报, 2024, 60(2): 143-153.
[2] 王冠杰, 刘盛咸, 周健, 孙志梅. 材料研究中的可解释机器学习[J]. 金属学报, 2024, 60(10): 1345-1361.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[6] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[9] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[10] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[11] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[13] 谢建新, 宿彦京, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[14] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[15] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.