|
|
叠熵理论:从材料基因到材料性能 |
廖名情1, 王毅2( ), 王义3, 商顺利3, 刘梓葵3( ) |
1 江苏科技大学 材料科学与工程学院 镇江 212100 2 西北工业大学 凝固技术国家重点实验室 西安 710072 3 Department of Materials Science and Engineering, the Pennsylvania State University, University Park, PA, 16802, USA |
|
Zentropy Theory: Bridging Materials Gene to Materials Properties |
LIAO Mingqing1, WANG William Yi2( ), WANG Yi3, SHANG Shun-Li3, LIU Zi-Kui3( ) |
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China 2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 3 Department of Materials Science and Engineering, the Pennsylvania State University, University Park, PA, 16802, USA |
引用本文:
廖名情, 王毅, 王义, 商顺利, 刘梓葵. 叠熵理论:从材料基因到材料性能[J]. 金属学报, 2024, 60(10): 1379-1387.
Mingqing LIAO,
William Yi WANG,
Yi WANG,
Shun-Li SHANG,
Zi-Kui LIU.
Zentropy Theory: Bridging Materials Gene to Materials Properties[J]. Acta Metall Sin, 2024, 60(10): 1379-1387.
1 |
Gan Y. Research on the innovative development of new materials science and technology in China [J]. Engineering, 2024, 32: 10
|
2 |
Xie M, Gan Y, Wang H. Research on new material power strategy by 2035 [J]. Strategic Study CAE, 2020, 22(5): 1
|
2 |
谢 曼, 干 勇, 王 慧. 面向2035的新材料强国战略研究 [J]. 中国工程科学, 2020, 22(5): 1
|
3 |
Liu Z K. Perspective on materials genome [J]. Chin. Sci. Bull., 2013, 58: 3618
|
3 |
刘梓葵. 关于材料基因组的基本观点及展望 [J]. 科学通报, 2013, 58: 3618
|
4 |
National Science and Technology Council. Materials genome initiative for global competitiveness [EB/OL]. (2011-06-24).
|
5 |
National Science and Technology Council. Materials genome initiative strategic plan [EB/OL]. (2014-12-04).
|
6 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta. Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
6 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
7 |
National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M]. Washington, D.C.: The National Academies Press, 2008: 9
|
8 |
Wang W Y, Yin J L, Chai Z X, et al. Big data-assisted digital twins for the smart design and manufacturing of advanced materials: From atoms to products [J]. J. Mater. Inf., 2022, 2: 1
|
9 |
Liu Z K, Chen L Q, Raghavan P, et al. An integrated framework for multi-scale materials simulation and design [J]. J. Comput. Aided Mater. Des., 2004, 11: 183
|
10 |
Liu X, Furrer D, Kosters J, et al. Vision 2040 : A roadmap for integrated, multiscale modeling and simulation of materials and systems [EB/OL]. (2018-03-22).
|
11 |
National Academies of Sciences, Engineering, and Medicine. NSF Efforts to Achieve the Nation's Vision for the Materials Genome Initiative: Designing Materials to Revolutionize and Engineer Our Future (DMREF) [M]. Washington, D.C.: The National Academies Press, 2023: 57
|
12 |
Xie J X. Prospects of materials genome engineering frontiers [J]. Mater. Genome Eng. Adv., 2023, 1: e17
|
13 |
Xie J X, Su Y J, Zhang D W, et al. A vision of materials genome engineering in China [J]. Engineering, 2022, 10: 10
|
14 |
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
|
15 |
Lu Z C, Zhang Y B, Li W Y, et al. Materials genome strategy for metallic glasses [J]. J. Mater. Sci. Technol., 2023, 166: 173
doi: 10.1016/j.jmst.2023.04.074
|
16 |
Wang G J, Peng L Y, Li K Q, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
|
17 |
Wang G J, Li K Q, Peng L Y, et al. High-throughput automatic integrated material calculations and data management intelligent platform and the application in novel alloys [J]. Acta. Metall. Sin., 2022, 58: 75
doi: 10.11900/0412.1961.2021.00041
|
17 |
王冠杰, 李开旗, 彭力宇 等. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58: 75
doi: 10.11900/0412.1961.2021.00041
|
18 |
Chong X Y, Yu W, Liang Y X, et al. Understanding oxidation resistance of Pt-based alloys through computations of Ellingham diagrams with experimental verifications [J]. J. Mater. Inf., 2023, 3: 21
|
19 |
Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
|
20 |
Liu Y L, Niu C, Wang Z, et al. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57: 113
doi: 10.1016/j.jmst.2020.01.067
|
21 |
E W N. AI helps to establish a new paradigm for scientific research [J]. Bull. Chin. Acad. Sci., 2024, 39(1): 10
|
21 |
鄂维南. AI助力打造科学研究新范式 [J]. 中国科学院院刊, 2024, 39(1): 10
|
22 |
Li G J. AI4R: The fifth scientific research paradigm [J]. Bull. Chin. Acad. Sci., 2024, 39: 1
|
22 |
李国杰. 智能化科研(AI4R):第五科研范式 [J]. 中国科学院院刊, 2024, 39: 1
|
23 |
Ågren J. The materials genome and CALPHAD [J]. Chin. Sci. Bull., 2013, 58: 3633
|
23 |
Ågren J. 材料基因组与相图计算 [J]. 科学通报, 2013, 58: 3633
|
24 |
Wang S Q, Ye H Q. First-principles calculation of crystalline materials genome [J]. Chin. Sci. Bull., 2013, 58: 3623
|
24 |
王绍青, 叶恒强. 晶体材料基因组问题第一原理计算研究 [J]. 科学通报, 2013, 58: 3623
|
25 |
Liu Z K. Computational thermodynamics and its applications [J]. Acta Mater., 2020, 200: 745
|
26 |
Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics [J]. J. Phase Equilib. Diffus., 2009, 30: 517
|
27 |
Olson G B, Liu Z K. Genomic materials design: CALculation of PHAse Dynamics [J]. Calphad, 2023, 82: 102590
|
28 |
Liu Z K. Thermodynamics and its prediction and CALPHAD modeling: Review, state of the art, and perspectives [J]. Calphad, 2023, 82: 102580
|
29 |
Campbell C E, Kattner U R, Liu Z K. File and data repositories for next generation CALPHAD [J]. Scr. Mater., 2014, 70: 7
|
30 |
Liu Z K, Wang Y, Shang S L. Zentropy theory for positive and negative thermal expansion [J]. J. Phase Equilib. Diffus., 2022, 43: 598
|
31 |
Liu Z K. Building materials genome from ground‐state configuration to engineering advance [J]. Mater. Genome Eng. Adv., 2023, 1: e15
|
32 |
Liu Z K, Hew N L E, Shang S L. Zentropy theory for accurate prediction of free energy, volume, and thermal expansion without fitting parameters [J]. Microstructures, 2024, 4: 2024009
|
33 |
Mooraj S, Chen W. A review on high-throughput development of high-entropy alloys by combinatorial methods [J]. J. Mater. Inf., 2023, 3: 4
|
34 |
Jiang B B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance [J]. Science, 2021, 371: 830
doi: 10.1126/science.abe1292
pmid: 33602853
|
35 |
Liu Y, Lu Y H, Wang W Y, et al. Effects of solutes on thermodynamic properties of (TMZrU)C (TM = Ta, Y) medium-entropy carbides: A first-principles study [J]. J. Mater. Inf., 2023, 3: 17
|
36 |
Liao M Q, Gong H S, Qu N, et al. CALPHAD aided mechanical properties screening in full composition space of NbC-TiC-VC-ZrC ultra-high temperature ceramics [J]. Int. J. Refract. Met. Hard Mater., 2023, 113: 106191
|
37 |
Wang J, Chong X Y, Lv L, et al. High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties [J]. J. Mater. Sci. Technol., 2023, 157: 98
|
38 |
Chen L X, Chen Z W, Yao X, et al. High-entropy alloy catalysts: High-throughput and machine learning-driven design [J]. J. Mater. Inf., 2022, 2: 19
|
39 |
Ceder G. A derivation of the Ising model for the computation of phase diagrams [J]. Comput. Mater. Sci., 1993, 1: 144
|
40 |
Liu Z K. Theory of cross phenomena and their coefficients beyond Onsager theorem [J]. Mater. Res. Lett., 2022, 10: 393
|
41 |
Liu Z K. Quantitative predictive theories through integrating quantum, statistical, equilibrium, and nonequilibrium thermodynamics [J]. J. Phys.: Condens. Matter., 2024, 36: 343003
|
42 |
Liu Z K. On Gibbs Equilibrium and hillert nonequilibrium thermodynamics [DB/OL]. arXiv: 2402. 14231, 2024
|
43 |
Wang Y, Liao M Q, Bocklund B J, et al. DFTTK: Density functional theory toolKit for high-throughput lattice dynamics calculations [J]. Calphad, 2021, 75: 102355
|
44 |
Liu Z K, Li B, Lin H. Multiscale entropy and its implications to critical phenomena, emergent behaviors, and information [J]. J. Phase Equilib. Diffus., 2019, 40: 508
|
45 |
Liu Z K, Wang Y, Shang S L. Thermal expansion anomaly regulated by entropy [J]. Sci. Rep., 2014, 4: 7043
|
46 |
Shang S L, Wang Y, Liu Z K. Quantifying the degree of disorder and associated phenomena in materials through zentropy: Illustrated with Invar Fe3Pt [J]. Scr. Mater., 2023, 225: 115164
|
47 |
Liu Z K, Shang S L, Du J L, et al. Parameter-free prediction of phase transition in PbTiO3 through combination of quantum mechanics and statistical mechanics [J]. Scr. Mater., 2023, 232: 115480
|
48 |
Liang E J, Sun Q, Yuan H L, et al. Negative thermal expansion: Mechanisms and materials [J]. Front. Phys., 2021, 16: 53302
|
49 |
Zhou C, Tang Z Y, Kong X Q, et al. High-performance zero thermal expansion in Al metal matrix composites [J]. Acta Mater., 2024, 275: 120076
|
50 |
Liao M Q, Wang Y, Wang F J, et al. Unexpected low thermal expansion coefficients of pentadiamond [J]. Phys. Chem. Chem. Phys., 2022, 24: 23561
|
51 |
Wang Y, Hector Jr L G, Zhang H, et al. A thermodynamic framework for a system with itinerant-electron magnetism [J]. J. Phys.: Condens. Matter., 2009, 21: 326003
|
52 |
Wang Y, Shang S L, Zhang H, et al. Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype [J]. Philos. Mag. Lett., 2010, 90: 851
|
53 |
Shang S L, Wang Y, Liu Z K. Thermodynamic fluctuations between magnetic states from first-principles phonon calculations: The case of bcc Fe [J]. Phys. Rev., 2010, 82B: 014425
|
54 |
Shang S L, Saal J E, Mei Z G, et al. Magnetic thermodynamics of fcc Ni from first-principles partition function approach [J]. J. Appl. Phys., 2010, 108: 123514
|
55 |
Liu Z K, Wang Y, Shang S L. Origin of negative thermal expansion phenomenon in solids [J]. Scr. Mater., 2011, 65: 664
|
56 |
Wang Y, Hector Jr L G, Zhang H, et al. Thermodynamics of the Ce γ-α transition: Density-functional study [J]. Phys. Rev, 2008, 78B: 104113
|
57 |
Li Y L, Hu S Y, Liu Z K, et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films [J]. Acta Mater., 2002, 50: 395
|
58 |
Meyer B, Vanderbilt D. Ab initio study of ferroelectric domain walls in PbTiO3 [J]. Phys. Rev., 2002, 65B: 104111
|
59 |
Fang H Z, Wang Y, Shang S L, et al. Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTiO3 [J]. Phys. Rev., 2015, 91B: 024104
|
60 |
Du J L, Malyi O I, Shang S L, et al. Density functional thermodynamic description of spin, phonon and displacement degrees of freedom in antiferromagnetic-to-paramagnetic phase transition in YNiO3 [J]. Mater. Today Phys., 2022, 27: 100805
|
61 |
Du J L, Zhang Z L, Shang S L, et al. Underpinnings behind the magnetic order-to-disorder transition and property anomaly of disproportionated insulating samarium nickelate [J]. Acta Mater., 2024, 268: 119783
|
62 |
Liu Z K, Shang S L. Revealing symmetry-broken superconducting configurations by density functional theory [DB/OL]. arXiv: 2404. 00719, 2024
|
63 |
Hong Q J, Liu Z K. A generalized approach for rapid entropy calculation of liquids and solids [DB/OL]. arXiv: 2403. 19872, 2024
|
64 |
Bocklund B, Otis R, Egorov A, et al. ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: Application to Cu-Mg [J]. MRS Commun., 2019, 9: 618
doi: 10.1557/mrc.2019.59
|
65 |
Otis R, Liu Z K. pycalphad: CALPHAD-based computational thermodynamics in python [J]. J. Open Res. Softw., 2017, 5: 1
|
66 |
Paulson N H, Bocklund B J, Otis R A, et al. Quantified uncertainty in thermodynamic modeling for materials design [J]. Acta Mater., 2019, 174: 9
doi: 10.1016/j.actamat.2019.05.017
|
67 |
Peng J, Lee S, Williams A, et al. Advanced data science toolkit for non-data scientists—A user guide [J]. Calphad, 2020, 68: 101733
|
68 |
Krajewski A M, Siegel J W, Xu J, et al. Extensible structure-informed prediction of formation energy with improved accuracy and usability employing neural networks [J]. Comput. Mater. Sci., 2022, 208: 111254
|
69 |
Liu Z K. Ocean of data: Integrating first-principles calculations and CALPHAD modeling with machine learning [J]. J. Phase Equilib. Diffus., 2018, 39: 635
|
70 |
Liu Z K. View and comments on the data ecosystem: “Ocean of data” [J]. Engineering, 2020, 6: 604
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|