Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 526-540    DOI: 10.11900/0412.1961.2024.00042
  综述 本期目录 | 过刊浏览 |
钨材料中缺陷的形成及演化规律
罗来马1,2,3(), 魏国庆1,2,3, 刘祯1, 朱晓勇1,3, 吴玉程1,2,3
1 合肥工业大学 材料科学与工程学院 合肥 230009
2 合肥工业大学 材料科学与工程学院 高性能铜合金材料及成形加工教育部工程研究中心 合肥 230009
3 合肥工业大学 材料科学与工程学院 有色金属与加工技术国家地方联合工程研究中心  合肥 230009
Formation and Evolution of Defects in Tungsten Materials
LUO Laima1,2,3(), WEI Guoqing1,2,3, LIU Zhen1, ZHU Xiaoyong1,3, WU Yucheng1,2,3
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2 Engineering Research Center for High-Performance Copper Alloys and Forming Processing of the Ministry of Education, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
引用本文:

罗来马, 魏国庆, 刘祯, 朱晓勇, 吴玉程. 钨材料中缺陷的形成及演化规律[J]. 金属学报, 2025, 61(4): 526-540.
Laima LUO, Guoqing WEI, Zhen LIU, Xiaoyong ZHU, Yucheng WU. Formation and Evolution of Defects in Tungsten Materials[J]. Acta Metall Sin, 2025, 61(4): 526-540.

全文: PDF(3795 KB)   HTML
摘要: 

钨材料作为一种重要的工业材料,以其高密度、高熔点和卓越的硬度及耐磨性能而闻名。晶体缺陷在钨材料的晶体结构中是常见的,调控钨材料中的缺陷是改善其性能的重要手段,深入理解钨材料中缺陷的形成与演化是实现其调控的理论基础。本文从烧结过程引入缺陷、应力效应引入缺陷2个关键方面,综述了钨材料缺陷的形成机制及其研究进展,对应地从制备、加工等角度来理解钨材料中的缺陷,并对相关领域近年来的研究进展进行了评述和展望,旨在为钨材料的研究提供参考。

关键词 钨材料缺陷烧结塑性变形晶体缺陷    
Abstract

Tungsten material is an industrially important material owing to its high density, high melting point, excellent hardness, and wear resistance. Crystal defects (e.g., dislocations and vacancies) are common in its structure, thereby influencing the performance of tungsten materials. Therefore, controlling these defects is crucial for enhancing their performance. A deep understanding of how defects form and evolve serves as a theoretical basis for controlling them. This article reviews the mechanisms of defect formation and research advancements in tungsten materials from two key perspectives: defect introduction during the sintering process and through stress effects. Accordingly, this study explores defects in tungsten materials from the viewpoint of preparation and processing, summarizing recent advancements and prospects in related fields, aiming to provide a valuable reference for future research on tungsten materials.

Key wordstungsten material    defect    sintering    plastic deformation    crystal defect
收稿日期: 2024-02-04     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2019YFE03120002, 2022YFE03140000);安徽省重大基础研究项目(2023z04020006)
通讯作者: 罗来马,luolaima@126.com,主要从事钨基复合材料制备及辐照损伤方面的研究
Corresponding author: LUO Laima, professor, Tel: 13685512719, E-mail: luolaima@126.com
作者简介: 罗来马,男,1980年生,教授,博士
图1  钨材料烧结过程中产生的缺陷[30~32]
图2  杂质原子形成点缺陷、不同W晶界的强化/脆化能量(ΔESE)与异质原子半径关系示意图[38]及过渡金属原子晶界的偏聚能量和强化能量的典型例子[38]
图3  第二相与钨基体材料界面关系及实例[70,87,92]
图4  W的塑性变形工艺实例及微观结构[100,101]
图5  W及钨合金拉伸性能汇总[61,64,88,91,92,97,100,102~106]
图6  W中的位错类型及迁移特性[100,119]
图7  W中孪晶的形成与机理[127,128,135]
1 Yang H, Wu N Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review [J]. Energy Sci. Eng., 2022, 10: 1643
2 Shandilya P, Sambyal S, Sharma R, et al. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts [J]. J. Hazard. Mater., 2022, 428: 128218
3 Hu Y J. First-principles approaches and models for crystal defect energetics in metallic alloys [J]. Comput. Mater. Sci., 2023, 216: 111831
4 Yeh J W. Physical metallurgy of high-entropy alloys [J]. JOM, 2015, 67: 2254
5 Mücklich F, Ilić N. RuAl and its alloys. Part I. Structure, physical properties, microstructure and processing [J]. Intermetallics, 2005, 13: 5
6 DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
7 Jin W W, Zhang C Q, Jin S Y, et al. Wire arc additive manufacturing of stainless steels: A review [J]. Appl. Sci., 2020, 10: 1563
8 Tang S Y, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—A review [J]. Adv. Eng. Mater., 2021, 23: 2100053
9 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
10 Sundar A, Chen G L, Qi L. Substitutional adsorptions of chloride at grain boundary sites on hydroxylated alumina surfaces initialize localized corrosion [J]. npj Mater. Degrad., 2021, 5: 18
11 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564 pmid: 27976669
12 Iveković A, Omidvari N, Vrancken B, et al. Selective laser melting of tungsten and tungsten alloys [J]. Int. J. Refract. Met. Hard Mater., 2018, 72: 27
13 Yu Z W, Chen G J, Wang J X, et al. Research status and development trend of tungsten alloy cutting [J]. Int. J. Adv. Manuf. Technol., 2023, 125: 4435
14 Polk J E. Operation of thoriated tungsten cathodes [J]. AIP Conf. Proc., 1993, 271: 1435
15 Lee H, Tomar V. Understanding effect of grain boundaries in the fracture behavior of polycrystalline tungsten under mode-I loading [J]. J. Eng. Mater. Technol., 2012, 134: 031010
16 Wang Z H, Zhao K X, Chen W M, et al. Atomistic modeling of diffusion coefficient in fusion reactor first wall material tungsten [J]. Appl. Therm. Eng., 2014, 73: 111
17 Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace [J]. Rare Met. Mater. Eng., 2011, 40: 1871
17 郑 欣, 白 润, 王东辉 等. 航天航空用难熔金属材料的研究进展 [J]. 稀有金属材料与工程, 2011, 40: 1871
18 Huang Z F, Song J J, Pan L, et al. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy [J]. Adv. Mater., 2015, 27: 5309
19 Rieth M, Dudarev S L, de Vicente S M G, et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe [J]. J. Nucl. Mater., 2013, 432: 482
20 Marinica M C, Ventelon L, Gilbert M R, et al. Interatomic potentials for modelling radiation defects and dislocations in tungsten [J]. J. Phys.: Condens. Mat., 2013, 25: 395502
21 Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles [J]. Int. Mater. Rev., 2008, 53: 326
22 Hu P, Chen T Y, Li X J, et al. Ultrafast synthesis of nanocrystalline molybdenum powder by thermal plasma and its sintering behavior [J]. Int. J. Refract. Met. Hard Mater., 2019, 83: 104969
23 Park S J, German R M, Martin J M, et al. Densification behavior of tungsten heavy alloy based on master sintering curve concept [J]. Metall. Mater. Trans., 2006, 37A: 2837
24 Lee K H, Cha S I, Ryu H J, et al. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy [J]. Mater. Sci. Eng., 2007, A458: 323
25 Ren C, Fang Z Z, Zhang H, et al. The study on low temperature sintering of nano-tungsten powders [J]. Int. J. Refract. Met. Hard Mater., 2016, 61: 273
26 Malewar R, Kumar K S, Murty B S, et al. On sinterability of nanostructured W produced by high-energy ball milling [J]. J. Mater. Res., 2007, 22: 1200
27 Wang H T, Fang Z Z, Hwang K S, et al. Sinter-ability of nanocrystalline tungsten powder [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 312
28 Won C W, Nersisyan H H, Won H I, et al. Refractory metal nanopowders: Synthesis and characterization [J]. Curr. Opin. Solid State Mater. Sci., 2010, 14: 53
29 Fang Z Z, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective [J]. Int. J. Refract. Met. Hard Mater., 2017, 62: 110
30 Verma D, Biswas S, Prakash C, et al. Relating interface evolution to interface mechanics based on interface properties [J]. JOM, 2017, 69: 30
31 Xiao F N, Barriere T, Cheng G, et al. A review of liquid-liquid method for the elaboration and modelling of reinforced tungsten alloys with various sintering processes [J]. J. Alloys Compd., 2023, 940: 168752
32 Zhang L, Li X Y, Qu X H, et al. Powder metallurgy route to ultrafine-grained refractory metals [J]. Adv. Mater., 2023, 35: e2205807
33 Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain-size, I. Y2O3 [J]. J. Am. Ceram. Soc., 2006, 89: 431
34 Li X Y, Zhang L, Dong Y H, et al. Towards pressureless sintering of nanocrystalline tungsten [J]. Acta Mater., 2021, 220: 117344
35 Que Z Y, Wei Z C, Li X Y, et al. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum [J]. J. Mater. Sci. Technol., 2022, 126: 203
doi: 10.1016/j.jmst.2022.01.033
36 Lu G H, Zhang Y, Deng S H, et al. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening [J]. Phys. Rev., 2006, 73B: 224115
37 Rice J R, Wang J S. Embrittlement of interfaces by solute segregation [J]. Mater. Sci. Eng., 1989, A107: 23
38 Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
39 Kurishita H, Kobayashi S, Nakai K, et al. Development of ultra-fine grained W-(0.25-0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations [J]. J. Nucl. Mater., 2008, 377: 34
40 Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications [J]. J. Nucl. Mater., 2007, 360-370: 1453
41 Zhang Y, Ganeev A V, Wang J T, et al. Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity [J]. Mater. Sci. Eng., 2009, A503: 37
42 Funkenbusch A W, Bacon F, Lee D. The influence of microstructure on fracture of drawn tungsten wire [J]. Metall. Trans., 1979, 10A: 1085
43 Tran-Huu-Loi, Morniroli J P, Gantois M, et al. Brittle fracture of polycrystalline tungsten [J]. J. Mater. Sci., 1985, 20: 199
44 Gludovatz B, Wurster S, Weingärtner T, et al. Influence of impurities on the fracture behaviour of tungsten [J]. Philos. Mag., 2011, 91: 3006
45 Krasko G L. Effect of impurities on the electronic structure of grain boundaries and intergranular cohesion in iron and tungsten [J]. Mater. Sci. Eng., 1997, A234-236: 1071
46 Pan Z L, Kecskes L J, Wei Q M. The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten [J]. Comput. Mater. Sci., 2014, 93: 104
47 Veverka J, Vilémová M, Chlup Z, et al. Evolution of carbon and oxygen concentration in tungsten prepared by field assisted sintering and its effect on ductility [J]. Int. J. Refract. Met. Hard Mater., 2021, 97: 105499
48 Šestan A, Zavašnik J, Kržmanc M M, et al. Tungsten carbide as a deoxidation agent for plasma-facing tungsten-based materials [J]. J. Nucl. Mater., 2019, 524: 135
49 Liu R, Xie Z M, Zhang T, et al. Mechanical properties and microstructures of W-1%Y2O3 microalloyed with Zr [J]. Mater. Sci. Eng., 2016, A660: 19
50 Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 597
51 Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
52 Xie Z M, Liu R, Fang Q F, et al. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten [J]. J. Nucl. Mater., 2014, 444: 175
53 Liu R, Xie Z M, Hao T, et al. Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening [J]. J. Nucl. Mater., 2014, 451: 35
54 Beyerlein I J, Demkowicz M J, Misra A, et al. Defect-interface interactions [J]. Prog. Mater. Sci., 2015, 74: 125
55 Lu S, Ågren J, Vitos L. Ab initio study of energetics and structures of heterophase interfaces: From coherent to semicoherent interfaces [J]. Acta Mater., 2018, 156: 20
56 Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
57 Cui B, Luo C Y, Chen X X, et al. Superior radiation resistance of ZrO2-modified W composites [J]. Materials, 2022, 15: 1985
58 Jung W S, Chung S H. Ab initio calculation of interfacial energies between transition metal carbides and fcc iron [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 075008
59 Wang J Q, Liu W F, Liu S, et al. Effect of aging treatment at 700 oC on microstructure and mechanical properties of 9Cr-ODS steel [J]. Acta Metall. Sin., 2024, 60: 616
59 汪建强, 刘威峰, 刘 生 等. 700 ℃时效对9Cr-ODS钢微观组织和力学性能的影响 [J]. 金属学报, 2024, 60: 616
doi: 10.11900/0412.1961.2022.00558
60 Xiao F N, Xu L J, Zhou Y C, et al. Preparation, microstructure, and properties of tungsten alloys reinforced by ZrO2 particles [J]. Int. J. Refract. Met. Hard Mater., 2017, 64: 40
61 Rui X, Li Y F, Zhang J R, et al. Microstructure and mechanical properties of a novel designed 9Cr-ODS steel synergically strengthened by nano precipitates [J]. Acta Metall. Sin., 2023, 59: 1590
doi: 10.11900/0412.1961.2021.00534
61 芮 祥, 李艳芬, 张家榕 等. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 [J]. 金属学报, 2023, 59: 1590
62 Battabyal M, Schäublin R, Spätig P, et al. W-2wt.%Y2O3 composite: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2012, A538: 53
63 Li J F, Cheng J G, Wei B Z, et al. Microstructure and properties of La2O3 doped W composites prepared by a wet chemical process [J]. Int. J. Refract. Met. Hard Mater., 2017, 66: 226
64 Lian Y Y, Liu X, Feng F, et al. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging [J]. Phys. Scr., 2017, 2017: 014044
65 Dong Z, Ma Z Q, Dong J, et al. The simultaneous improvements of strength and ductility in W-Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering [J]. Mater. Sci. Eng., 2020, A784: 139329
66 Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature [J]. Acta Mater., 2021, 220: 117309
67 Shu R, Jiang X S, Li J R, et al. Microstructures and mechanical properties of Al-Si alloy nanocomposites hybrid reinforced with nano-carbon and in-situ Al2O3 [J]. J. Alloys Compd., 2019, 800: 150
68 Zhang G H, Jiang X S, Qiao C J, et al. Investigation of the microstructure and mechanical properties of copper-graphite composites reinforced with single-crystal α-Al2O3 fibres by hot isostatic pressing [J]. Materials, 2018, 11: 982
69 Wang X L, Li J R, Zhang Y, et al. Improvement of interfacial bonding and mechanical properties of Cu-Al2O3 composite by Cr-nanoparticle-induced interfacial modification [J]. J. Alloys Compd., 2017, 695: 2124
70 Wu Z X, Jiang X S, Sun H L, et al. Nano/micro-scale numerical simulation and microscopic analysis on metal/oxide interfaces: A review [J]. Composites, 2022, 163A: 107184
71 Guo X C, Shang F L. Reinvestigation of the tensile strength and fracture property of Ni(111)/α-Al2O3(0001) interfaces by first-principle calculations [J]. Comput. Mater. Sci., 2011, 50: 1711
72 Punkkinen M P J, Kokko K, Levämäki H, et al. Adhesion of the iron-chromium oxide interface from first-principles theory [J]. J. Phys.: Condens. Matter, 2013, 25: 495501
73 Shao Z Y, Jiang X S, Shu R, et al. Effect of Cr micro-alloying on microstructure and mechanical properties of alumina whisker and graphene co-reinforced copper matrix composites [J]. J. Alloys Compd., 2022, 909: 164804
74 Liu H, Li Y P, Zhang C L, et al. The tensile properties and fracture of the Ni/Cr2O3 interface: First principles simulation [J]. Comput. Mater. Sci., 2014, 82: 367
75 Salehinia I, Shao S, Wang J, et al. Plastic deformation of metal/ceramic nanolayered composites [J]. JOM, 2014, 66: 2078
76 Rong J, Wang X, Zhang Y N, et al. Al2O3/FeAl interfacial behaviors by yttrium doping in high temperature oxidation [J]. Ceram. Int., 2019, 45: 22273
doi: 10.1016/j.ceramint.2019.07.253
77 Fu X Q, Liang L H, Wei Y G. Atomistic simulation study on the shear behavior of Ag/MgO interface [J]. Comput. Mater. Sci., 2018, 155: 116
78 Chen L, Li Y F, Xiao B, et al. Chemical bonding, thermodynamic stability and mechanical strength of Ni3Ti/α-Al2O3 interfaces by first-principles study [J]. Scr. Mater., 2021, 190: 57
79 Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
80 Fang H Z, Shang S L, Wang Y, et al. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques [J]. J. Appl. Phys., 2014, 115: 043501
81 Liu J P, Fan G L, Tan Z Q, et al. Mechanical properties and failure mechanisms at high temperature in carbon nanotube reinforced copper matrix nanolaminated composite [J]. Composites, 2019, 116A: 54
82 Yao G, Liu X P, Zhao Z H, et al. Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement [J]. Mater. Des., 2021, 212: 110249
83 Chen Z, Li Y, Lian Y Y, et al. Response of yttria dispersion strengthened tungsten simultaneously exposed to steady-state and transient hydrogen plasma [J]. Nucl. Fusion, 2020, 60: 046020
84 Veleva L, Schaeublin R, Battabyal M, et al. Investigation of microstructure and mechanical properties of W-Y and W-Y2O3 materials fabricated by powder metallurgy method [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 210
85 Ding X Y, Luo L M, Chen H Y, et al. Chemical synthesis and oxide dispersion properties of strengthened tungsten via spark plasma sintering [J]. Materials, 2016, 9: 879
86 Hu W Q, Dong Z, Ma Z Q, et al. W-Y2O3 composite nanopowders prepared by hydrothermal synthesis method: Co-deposition mechanism and low temperature sintering characteristics [J]. J. Alloys Compd., 2020, 821: 153461
87 Hu W Q, Dong Z, Yu L M, et al. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation [J]. J. Mater. Sci. Technol., 2020, 36: 84
88 Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
89 Zhang J, Tian Y, Zhu J W, et al. Microstructure and mechanical properties of HfC reinforced W matrix composites regulated by trace Zr [J]. Int. J. Refract. Met. Hard Mater., 2020, 86: 105096
90 Kang K J, Tu R, Luo G Q, et al. Synergetic effect of Re alloying and SiC addition on strength and toughness of tungsten [J]. J. Alloys Compd., 2018, 767: 1064
91 Miao S, Xie Z M, Yang X D, et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5wt.% TaC alloys [J]. Int. J. Refract. Met. Hard Mater., 2016, 56: 8
92 Xie X F, Zhang Y G, Xie Z M, et al. Stable nanoparticles dispersion induced an unprecedented high strength in a bulk W-TiC alloy [J]. Scr. Mater., 2023, 224: 115136
93 Kurishita H, Matsuo S, Arakawa H, et al. Current status of nanostructured tungsten-based materials development [J]. Phys. Scr., 2014, 2014: 014032
94 Zibrov M, Bystrov K, Mayer M, et al. The high-flux effect on deuterium retention in TiC and TaC doped tungsten at high temperatures [J]. J. Nucl. Mater., 2017, 494: 211
95 Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
96 AlMangour B, Baek M S, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J]. Mater. Sci. Eng., 2018, A712: 812
97 Xie Z M, Liu R, Fang Q F, et al. Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method [J]. Plasma Sci. Technol., 2015, 17: 1066
98 Reiser J, Hoffmann J, Jäntsch U, et al. Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351
99 Wei Q, Kecskes L J. Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten [J]. Mater. Sci. Eng., 2008, A491: 62
100 Xie X F, Xie Z M, Liu R, et al. Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten [J]. Acta Mater., 2022, 228: 117765
101 Wu X B, Zhang X, Xie Z M, et al. Insight into interface cohesion and impurity-induced embrittlement in carbide dispersion strengthen tungsten from first principles [J]. J. Nucl. Mater., 2020, 538: 152223
102 Nogami S, Hasegawa A, Fukuda M, et al. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan [J]. J. Nucl. Mater., 2021, 543: 152506
103 Raffo P L. Yielding and fracture in tungsten and tungsten-rhenium alloys [J]. J. Less Common Met., 1969, 17: 133
104 Xie Z M, Liu R, Zhang T, et al. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure [J]. Mater. Des., 2016, 107: 144
105 Xie Z M, Liu R, Miao S, et al. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3 [J]. J. Nucl. Mater., 2015, 464: 193
106 Yang X D, Xie Z M, Miao S, et al. Tungsten-zirconium carbide-rhenium alloys with extraordinary thermal stability [J]. Fusion Eng. Des., 2016, 106: 56
107 Dong Z, Ma Z Q, Yu L M, et al. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor [J]. Nat. Commun., 2021, 12: 5052
doi: 10.1038/s41467-021-25283-2 pmid: 34417455
108 Cheng Y, Mrovec M, Gumbsch P. Atomistic simulations of interactions between the 1/2<111> edge dislocation and symmetric tilt grain boundaries in tungsten [J]. Philos. Mag., 2008, 88: 547
109 Smiti E, Jouffrey P, Kobylanski A. The influence of carbon and oxygen in the grain boundary on the brittle-ductile transition temperature of tungsten Bi-crystals [J]. Scr. Metall., 1984, 18: 673
110 Hartmaier A, Gumbsch P. Mesoscopic simulation of dislocation activity at crack tips [J]. MRS Online Proc. Libr., 1999, 539: 233
111 Wang L H, Teng J, Sha X C, et al. Plastic deformation through dislocation saturation in ultrasmall pt nanocrystals and its in situ atomistic mechanisms [J]. Nano Lett., 2017, 17: 4733
doi: 10.1021/acs.nanolett.7b01416 pmid: 28715223
112 Miao S, Zhao Y Q, Xie Z M, et al. On the ductilization and the resistance to annealing-induced embrittlement of high-strength W-Re and nano-particle doped W-Re-ZrC alloys [J]. Mater. Sci. Eng., 2022, A861: 144334
113 Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29: 73
114 Khantha M, Pope D P, Vitek V. Dislocation screening and the brittle-to-ductile transition: A Kosterlitz-Thouless type instability [J]. Phys. Rev. Lett., 1994, 73: 684
pmid: 10057511
115 Lu Y, Zhang Y H, Ma E, et al. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2110596118
116 Gröger R, Bailey A G, Vitek V. Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K [J]. Acta Mater., 2008, 56: 5401
117 Po G, Cui Y N, Rivera D, et al. A phenomenological dislocation mobility law for bcc metals [J]. Acta Mater., 2016, 119: 123
118 Duesbery M S, Xu W. The motion of edge dislocations in body-centered cubic metals [J]. Scr. Mater., 1998, 39: 283
119 Ren C, Fang Z Z, Xu L, et al. An investigation of the microstructure and ductility of annealed cold-rolled tungsten [J]. Acta Mater., 2019, 162: 202
120 Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten [J]. J. Nucl. Mater., 2003, 323: 304
121 Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater Sci., 1995, 39: 1
122 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
123 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
124 Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641 pmid: 19179523
125 Li X Y, Zhao Q K, Tian Y Z, et al. Phase transformation induced transitional twin boundary in body-centered cubic metals [J]. Acta Mater., 2023, 249: 118815
126 Ogata S, Li J, Yip S. Energy landscape of deformation twinning in bcc and fcc metals [J]. Phys. Rev., 2005, 71B: 224102
127 Wang J W, Zeng Z, Weinberger C R, et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten [J]. Nat. Mater., 2015, 14: 594
128 Wang X, Wang J W, He Y, et al. Unstable twin in body-centered cubic tungsten nanocrystals [J]. Nat. Commun., 2020, 11: 2497
doi: 10.1038/s41467-020-16349-8 pmid: 32427858
129 Kibey S, Liu J B, Johnson D D, et al. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation [J]. Acta Mater., 2007, 55: 6843
130 Weinberger C R, Battaile C C, Buchheit T E, et al. Incorporating atomistic data of lattice friction into BCC crystal plasticity models [J]. Int. J. Plast., 2012, 37: 16
131 Weinberger C R, Tucker G J, Foiles S M. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory [J]. Phys. Rev., 2013, 87B: 054114
132 Greer J R, Weinberger C R, Cai W. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations [J]. Mater. Sci. Eng., 2008, A493: 21
133 Christian J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys [J]. Metall. Trans., 1983, 14A: 1237
134 Duesbery M S, Vitek V. Plastic anisotropy in b.c.c. transition metals [J]. Acta Mater., 1998, 46: 1481
135 Wang J W, Zeng Z, Wen M R, et al. Anti-twinning in nanoscale tungsten [J]. Sci. Adv., 2020, 6: eaay2792
[1] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[2] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[3] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[4] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[5] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[6] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[7] 刘丞济, 孙文瑶, 陈明辉, 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 2024, 60(4): 485-494.
[8] 陈占兴, 王玉鹏, 荣光飞, 张新房, 马腾飞, 王晓红, 邢秋玮, 朱冬冬. 微纳米Ti2AlC增强TiAl复合材料高温强韧化机制[J]. 金属学报, 2024, 60(12): 1746-1754.
[9] 郭松源, 柳文波, 杨庆成, 戚晓勇, 恽迪. 黏性烧结过程的相场模拟[J]. 金属学报, 2024, 60(12): 1691-1700.
[10] 刘畅, 吴戈, 吕坚. 纳米结构多主元合金的力学行为及强塑化机制[J]. 金属学报, 2024, 60(1): 16-29.
[11] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[12] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[13] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[14] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[15] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.