Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1077-1094    DOI: 10.11900/0412.1961.2019.00122
  综述 本期目录 | 过刊浏览 |
镍基单晶高温合金的研发进展
张健(),王莉,王栋,谢光,卢玉章,申健,楼琅洪
中国科学院金属研究所 沈阳 110016
Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys
ZHANG Jian(),WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(30808 KB)   HTML
摘要: 

本文概述了近年来镍基单晶高温合金的研发进展。在合金研制方面,总结了单晶合金近几年的发展及其成分设计方法。针对单晶合金常见的变形和损伤、失效机制,分别介绍了单晶合金蠕变、疲劳、氧化及热腐蚀机理,以及单晶合金中常见缺陷对力学性能的影响。在单晶叶片制造工艺方面,总结了高速凝固、气冷、液态金属冷却、以及流态床冷却等几种常见定向凝固工艺的研发和应用现状,并介绍了单晶叶片中几种常见缺陷的形成机制和相关控制技术。此外,本文还讨论了单晶高温合金及单晶叶片在应用基础研究领域面临的困难和挑战。

关键词 单晶高温合金合金设计力学性能定向凝固缺陷    
Abstract

Single crystal superalloy is the key material used in the hot section of aeroengines and industry gas turbines. The research, development and application of these alloys is generally a mirror of the industry base of a country. The recent progress in research and development of single crystal superalloys is briefly reviewed in the present paper. Some new ideas in alloy development and the design methods are summarized. The deformation behaviors, damage and failure mechanisms of single crystal superalloys during creep, fatigue, oxidation and hot corrosion have been overviewed. The role of typical defects such as low angle grain boundary, recrystallization and micro-porosity is also discussed. The recent progress in the directional solidification processes and typical parameters of high rate solidification, gas cooling casting, liquid metal cooling and fluidized bed cooling are introduced. Fundamental correlations of processing parameters to defect formation and microstructure evolution during manufacture of single crystal blade is discussed. Additionally, the future opportunities and challenges are also explored.

Key wordssingle crystal superalloy    alloy design    mechanical property    directional solidification    defect
收稿日期: 2019-04-22     
ZTFLH:  TG132.3  
基金资助:国家重点研发计划项目(No.2017YFB0702904);国家自然科学基金项目(Nos.91860201、51631008、51871210、51771204、U1732131和51671196);国家科技重大专项项目(Nos.2017-VII-0008-0101、2017-VI-0001-0070和2017-VI-0003-0073)
通讯作者: 张健     E-mail: jianzhang@imr.ac.cn
Corresponding author: Jian ZHANG     E-mail: jianzhang@imr.ac.cn
作者简介: 张 健,男,1972年生,研究员,博士

引用本文:

张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
Jian ZHANG, Li WANG, Dong WANG, Guang XIE, Yuzhang LU, Jian SHEN, Langhong LOU. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys. Acta Metall Sin, 2019, 55(9): 1077-1094.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00122      或      https://www.ams.org.cn/CN/Y2019/V55/I9/1077

图1  钴基合金与典型第一代镍基单晶合金持久性能对比
Design method

Country

Key concept

Shortcoming

ADP

Japan

Computer regression processing based on a large number of experimentsThe relationship between alloy strength and elements was not established based on strengthening mechanism

ABD

England

Introduce some limiting parameters and filtering through big data computingThe element distribution and interface strengthening were not considered

MultOPT

Germany

Based on multi-standard optimization and semi-empirical modelThe precipitation?strengthening and interface strengthening were not considered in detail
表1  单晶合金设计方法
AlloysTest conditionCreep mechanisms at intermediate temperatureRef.

CMSX-4

1st generation SX alloy

750~850 ℃/450~750 MPa;

760 ℃/600, 700, 850 MPa

Different a/2<110> dislocations react at the interfaces of γ/γ'

a/2[011]+a/2[011]+a/2[1ˉ01]+a/2[1ˉ01]→a/3[112]+a/3[1ˉ12]+a/6[1ˉ12]+a/6[1ˉ12]a/3[1ˉ12] and a/6[1ˉ12] partial dislocations cut into γ' and leave a combination of SISF, SESF and APB

[33,34,38]

AM1, MC-NG, MC534, CMSX-10M, Rene N6

760 ℃/

840 MPa

a/2<110> dislocation cuts into γ' and results in a APB

[36]

SRR99

1st generation SX alloy

760 ℃/600, 780 MPa

760 ℃/600, 700, 850 MPa

a/2<110> dislocations dissociate at the interface:

a/2[1ˉ01]→a/3[1ˉ1ˉ2]+a/6[1ˉ21ˉ]

a/3<112> partial dislocations cut into γ' and leave a SISF or SESF a/6<112> partial dislocation would be left at the γ/γ' interfaces

[37,38]

表2  单晶高温合金中温蠕变机制[33,34,36,37,38]
图2  不同代别单晶高温合金的持久性能对比
图3  第三代单晶DD33在1100 ℃、150 MPa蠕变断裂后的筏化组织及典型位错网形貌[47]
图4  单晶叶片中几种典型的缺陷
AlloyTest conditionCreep life / hTest conditionCreep life / h
RR2072

950 ℃, 210 MPa

16

950 ℃, 290 MPa

14
RR2072-CB165~7772~150
RR2072-CB2175~190130~210
PWA1483

760 ℃, 414 MPa

38~97

982 ℃, 207 MPa

3.6
PWA1483-BHf>407830.4
表3  微量元素对高温合金双晶持久寿命的影响
图5  在固溶温度以上形成的再结晶层和在较低温度下形成的胞状再结晶
图6  再结晶对定向和单晶高温合金高温持久性能的影响
图7  利用X射线断层扫描(XCT)观察到的铸态和热等静压DD33单晶合金中的显微孔洞

Process

Advantage

Shortcoming

Physical potential of the cooling effectiveness[112]

Estimate of cooling effectiveness in an industry process [112]

PDAS for large cored blades*μm

High rate

solidification (HRS)

Easy operation, technical maturity

Shadow effect, temperature gradient decreased with casting size increasing

1

0.6

400~600[112]

Gas cooling

casting (GCC)

High temperature gradient with little influence by casting size

shadow effect, complex operation

1.7

1.5

320[112]

Liquid metal

cooling (LMC-Sn)

High temperature gradient with little influence by casting size

Casting contamination, complex operation

1.45

1.5

220~350

Liquid metal

cooling (LMC-Al)

Relatively high temperature gradient with little influence by casting size

Casting contamination, complex operation

1

1

360[112]

Fluidized bed

cooling (FBC)

High temperature gradient with little influence by casting sizeAlloy and equipment contamination, complex operation--

330[112]

表4  几种定向凝固工艺的特点
图8  螺旋选晶器的结构与典型组织
[1] GiameiA F, KearB H. On the nature of freckles in nickel base superalloys [J]. Metall. Trans., 1970, 1: 2185
[2] CopleyS M, GiameiA F, JohnsonS M, , et al. The origin of freckles in unidirectionally solidified castings [J]. Metall. Trans., 1970, 1: 2193
[3] ReedR C. The Superalloys Fundamentals and Applications [M]. London: Cambridge University Press, 2006: 170
[4] ChangJ X, WangD, LiuT, , et al. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy [J]. Corros. Sci., 2015, 98: 585
[5] ChangJ X, WangD, LiuX G, , et al. Effect of rhenium addition on hot corrosion resistance of Ni-based single crystal superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4343
[6] GellM, DuhlD N, GiameiA F. The development of single crystal superalloy turbine blades [A]. Superalloys 1980 [C]. Warrendale, PA: TMS, 1980: 205
[7] HarrisK, EricksonG L, SikkengaS L, , et al. Development of the rhenium containing superalloys CMSX-4 & CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines [A]. Superalloys 1992 [C]. Warrendale, PA: TMS, 1992: 297
[8] WalstonW S, O'HaraK S, RossE W, , et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 27
[9] ArgenceD, VernaultC, DesvalléesY, , et al. MC-NG: A 4th generation single crystal superalloy for future aeronautical turbine blades and vanes [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 829
[10] GillesR, MukherjiD, StrunzP, , et al. Characterization of single crystal superalloy SC16 by small angle neutron scattering and complementary analytical techniques [J]. Scr. Mater., 1998, 38: 803
[11] FinkP J, MillerJ L, KonitzerD G. Rhenium reduction—Alloy design using an economically strategic element [J]. JOM, 2010, 62(1): 55
[12] WahlJ B, HarrisK. New single crystal superalloys, CMSX?-7 and CMSX?-8 [A]. Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 179
[13] SatoJ, OmoriT, OikawaK, , et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
[14] BauerA, NeumeierS, PyczakF, , et al. Creep properties of different γ'-strengthened Co-base superalloys [J]. Mater. Sci. Eng., 2012, A550: 333
[15] LuY Z, XieG, WangD, , et al. Anisotropy of high temperature creep properties of a Co-base single crystal superalloy [J]. Mater. Sci. Eng., 2018, A720: 69
[16] XueF, ZhouH J, FengQ. Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti [J]. JOM, 2014, 66: 2486
[17] HarrisK, EricksonG L. Single crystal (single grain) alloy [P]. US Pat, 4582548, 1986
[18] ShahD M, CetelA. Evaluation of PWA 1483 for large single crystal IGT blade applications [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 295
[19] PollockT M, DibbernJ, TsunekaneM, , et al. New Co-based γ-γ′high-temperature alloys [J]. JOM, 2010, 62(1): 58
[20] KleinL, ShenY, KillianM S, , et al. Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys [J]. Corros. Sci., 2011, 53: 2713
[21] MurakumoT, KobayashiT, KoizumiY, , et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
[22] NathalM V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys [J]. Metall. Trans., 1987, 18A: 1961
[23] MorinagaM, YukawaN, AdachiH, , et al. New PHACOMP and its applications to alloy design [A]. Superalloys 1984 [C]. Warrendale, PA: TMS, 1984: 523
[24] SeiserB, DrautzR, PettiforD G. TCP phase predictions in Ni-based superalloys: Structure maps revisited [J]. Acta Mater., 2011, 59: 749
[25] FleischmannE, MillerM K, AffeldtE, , et al. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys [J]. Acta Mater., 2015, 87: 350
[26] RettigR, RitterN C, HelmerH E, , et al. Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: Design based on thermodynamic calculations and experimental validation [J]. Modell. Simul. Mater. Sci. Eng., 2015, 23: 035004
[27] CruddenD J, MotturaA, WarnkenN, , et al. Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys [J]. Acta Mater., 2014, 75: 356
[28] YamagataT, HaradaH, NakazawaS, , et al. Alloy design for high strength nickel-base single crystal alloys [A]. Superalloys 1984 [C]. Warrendale, PA: TMS, 1984: 157
[29] KawagishiK, YokokawaT, KobayashiT, , et al. Development of low or zero-rhenium high-performance Ni-base single crystal superalloys for jet engine and power generation applications [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 115
[30] ReedR C, MotturaA, CruddenD J. Alloys-by-design: Towards optimization of compositions of nickel-based superalloys [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 15
[31] RaeC. Alloys by design: Modelling next generation superalloys [J]. Mater. Sci. Technol., 2009, 25: 479
[32] RettigR, MatuszewskiK, MüllerA, , et al. Development of a low-density rhenium-free single crystal nickel-based superalloy by application of numerical multi-criteria optimization using thermodynamic calculations [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 35
[33] DrewG L, ReedR C, KakehiK, , et al. Single crystal superalloys: The transition from primary to secondary creep [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 127
[34] RaeC M F, ReedR C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55: 1067
[35] RaeC M F, RistM A, CoxD C, , et al. On the primary creep of CMSX-4 superalloy single crystal [J]. Metall. Mater. Trans., 2000, 31A: 2219
[36] DiologentF, CaronP. On the creep behavior at 1033 K of new generation single-crystal superalloys [J]. Mater. Sci. Eng., 2004, A385: 245
[37] LinkT, Feller-KniepmeierM. Shear mechanisms of the γ' phase in single-crystal superalloys and their relation to creep [J]. Metall. Trans., 1992, 23A: 99
[38] QiD Q, WangD, DuK, , et al. Creep deformation of a nickel-based single crystal superalloy under high stress at 1033 K [J]. J. Alloys Compd., 2018, 735: 813
[39] Academic Committee of the Superalloys, Chinese Society of Metals. China Superalloys Handbook (Book 2) [M]. Beijing: Standards Press of China, 2012: 1
[39] (中国金属学会高温材料分会. 中国高温合金手册(下卷) [M]. 北京: 中国标准出版社, 2012: 1)
[40] WilsonB C, FuchsG E. The effect of composition, misfit, and heat treatment on the primary creep behavior of single crystal nickel base superalloys PWA 1480 and PWA 1484 [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 149
[41] DuhlD N, GellM L. High strength corrosion resistant nickel base single crystal article [P]. UK Pat, 2112812A, 1983
[42] EricksonG L. The development and application of CMSX-10 [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 35
[43] PollockT M, ArgonA S. Creep resistance of CMSX-3 nickel base superalloy single crystals [J]. Acta Metall. Mater., 1992, 40: 1
[44] ZhangJ X, WangJ C, HaradaH, , et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep [J]. Acta Mater., 2005, 53: 4623
[45] WangX G, LiuJ L, JinT, , et al. Dislocation motion during high-temperature low-stress creep in Ru-free and Ru-containing single-crystal superalloys [J]. Mater. Des., 2015, 67: 543
[46] YueQ Z, LiuL, YangW C, , et al. Stress dependence of dislocation networks in elevated temperature creep of a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2019, A742: 132
[47] LiY F, WangL, ZhangG, , et al. Anisotropic stress rupture properties of a 3rd generation nickel-base single crystal superalloy at 1100 ℃/150 MPa [J]. Acta Metall. Sin. (Engl. Lett.), DOI: 10.1007/S40195-019-00931-1
[48] ZhangJ X, MurakumoT, HaradaH, , et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138 [J]. Scr. Mater., 2003, 48: 287
[49] ZhangJ X, KoizumiY, KobayashiT, , et al. Strengthening by γ/γ' interfacial dislocation networks in TMS-162—Toward a fifth-generation single-crystal superalloy [J]. Metall. Mater. Trans., 2004, 35A: 1911
[50] EggelerG, DlouhyA. On the formation of <010>-dislocations in the γ'-phase of superalloy single crystals during high temperature low stress creep [J]. Acta Mater., 1997, 45: 4251
[51] SrinivasanR, EggelerG, MillsM J. γ'-cutting as rate-controlling recovery process during high-temperature and low-stress creep of superalloy single crystals [J]. Acta Mater., 2000, 48: 4867
[52] ZhangJ X, MurakumoT, KoizumiY, , et al. Slip geometry of dislocations related to cutting of the γ' phase in a new generation single-crystal superalloy [J]. Acta Mater., 2003, 51: 5073
[53] TangY L, HuangM, XiongJ C, , et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336
[54] RamF, LiZ M, ZaeffererS, , et al. On the origin of creep dislocations in a Ni-base, single-crystal superalloy: An ECCI, EBSD, and dislocation dynamics-based study [J]. Acta Mater., 2016, 109: 151
[55] MakineniS K, LenzM, NeumeierS, , et al. Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy [J]. Scr. Mater., 2018, 157: 62
[56] CoakleyJ, LassE A, MaD, , et al. Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures [J]. Acta Mater., 2017, 136: 118
[57] DingQ Q, LiS Z, ChenL Q, , et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137
[58] WangX G, LiuJ L, LiuJ D, , et al. Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature [J]. Scr. Mater., 2018, 152: 94
[59] RuttertB, MeidC, RonceryL M, , et al. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy [J]. Scr. Mater., 2018, 155: 139
[60] WenZ X, PeiH Q, YangH, , et al. A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes [J]. Int. J. Fatigue, 2018, 111: 243
[61] BrookingL, GrayS, SumnerJ, , et al. Effect of stress state and simultaneous hot corrosion on the crack propagation and fatigue life of single crystal superalloy CMSX-4 [J]. Int. J. Fatigue, 2018, 116: 106
[62] SteuerS, VillechaiseP, PollockT M, , et al. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy [J]. Mater. Sci. Eng., 2015, A645: 109
[63] HuC Y, LiuX L, TaoC H, , et al. Influence of cooling holes distribution on high cycle fatigue fracture behavior of DD6 single crystal superalloy [J]. J. Mater. Eng., 2017, 45(4): 84
[63] 胡春燕, 刘新灵, 陶春虎等. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响 [J]. 材料工程, 2017, 45(4): 84)
[64] CervellonA, CormierJ, MaugetF, , et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2017, 104: 251
[65] Segers?llM, LeidermarkD, MoverareJ J. Influence of crystal orientation on the thermomechanical fatigue behaviour in a single-crystal superalloy [J]. Mater. Sci. Eng., 2015, A623: 68
[66] Segers?llM, KontisP, PedrazziniS, , et al. Thermal-mechanical fatigue behaviour of a new single crystal superalloy: Effects of Si and Re alloying [J]. Acta Mater., 2015, 95: 456
[67] LvJ J, WangA D, ChenC F. Thermal fatigue behavior of a nickel-base single crystal superalloy DD5 with secondary orientation [J]. Mater. Res. Express, 2018, 5: 1
[68] WangL, ZhouZ J, JiangW G, , et al. Effect of secondary orientation on thermal fatigue behavior of a nickel-base single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2014, 28: 663
[68] 王 莉, 周忠娇, 姜卫国等. 第二取向对镍基单晶高温合金DD33热疲劳性能的影响 [J]. 材料研究学报, 2014, 28: 663
[69] ZhouZ J, YuD Q, WangL, , et al. Effect of skew angle of holes on the thermal fatigue behavior of a Ni-based single crystal superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 185
[70] SatoA, ChiuY L, ReedR C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine application [J]. Acta Mater., 2011, 59: 225
[71] ZhangZ P, ZhangS Q, WangD, , et al. Effect of ppm level sulfur addition on isothermal oxidation behavior of a nickel-base single crystal superalloy [J]. Foundry, 2019, 68: 232
[71] 张宗鹏, 张思倩, 王 栋等. ppm级S对第二代抗热腐蚀镍基单晶高温合金恒温氧化行为的影响 [J]. 铸造, 2019, 68: 232
[72] SuzukiA S, KawagishiK, YokokawaT, , et al. Prediction of initial oxidation behavior of Ni-base single crystal superalloys: A new oxidation map and regression analysis [A]. Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 321
[73] PangH T, LiF, LiF, , et al. Effects of sea salt on the oxidation of CMSX-4? at 1100 ℃ [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 949
[74] LiJ R, ZhaoJ Q, LiuS Z, , et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 443
[75] StinvilleJ C, GallupK, PollockT M. Transverse creep of nickel-base superalloy bicrystals [J]. Metall. Mater. Trans., 2015, 46A: 2516
[76] WangY, WangD, ZhangG, , et al. Characterization of tilt and twist low angle grain boundaries and their effects on intermediate-temperature creep deformation behaviour [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 757
[77] RossE W, O'HaraK S. René N 4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 19
[78] ChenQ Z, JonesC N, KnowlesD M. The grain boundary microstructures of the base and modified RR 2072 bicrystal superalloys and their effects on the creep properties [J]. Mater. Sci. Eng., 2004, A385: 402
[79] XieG, WangL, ZhangJ, , et al. Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy [J]. Metall. Mater. Trans., 2008, 39A: 206
[80] XieG, WangL, ZhangJ, , et al. High temperature creep of directionally solidified Ni-base superalloys containing local recrystallization [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 453
[81] ZhengY R, RuanZ C, WangS C. Surface recrystallization of DZ22 alloy and its effect on the creep rupture property [J]. Acta Metall. Sin., 1995, 31(suppl.): 325
[81] 郑运荣, 阮中慈, 王顺才. DZ22合金的表层再结晶及其对持久性能的影响 [J]. 金属学报, 1995, 31(增刊):325)
[82] SunZ G. Recrystallization behaviour of Ni-base superalloy DZ17G [D]. Shenyang: Northeastern University, 2007
[82] 孙志国. DZ17G镍基高温合金再结晶行为研究 [D]. 沈阳: 东北大学, 2007
[83] KhanT, CaronP, NakagawaY G. Mechanical behavior and processing of DS and single crystal superalloys [J]. JOM, 1986, 38(7): 16
[84] WangD L. Recrystallization of several Ni-base superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006
[84] 王东林. 几种镍基高温合金再结晶问题的研究 [D]. 沈阳: 中国科学院金属研究所, 2006
[85] MengJ, JinT, SunX F, , et al. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2010, A527: 6119
[86] ZhangB, LuX, LiuD L, , et al. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy [J]. Mater. Sci. Eng., 2012, A551: 149
[87] ShiZ X, LiuS Z, WangX G, , et al. Effects of heat treatment on surface recrystallization and stress rupture properties of a fourth-generation single-crystal superalloy after grit blasting [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 614
[88] ZhangJ, LouL H. Basic research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637(张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
[89] OkazakiM, HiuraT, SuzukiT. Effect of local cellular transformation on fatigue small crack growth in CMSX-4 and CMSX-2 at high temperature [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 505
[90] MaX, ShiH J, GuJ, , et al. Influence of surface recrystallization on the low cycle fatigue behaviour of a single crystal superalloy [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 340
[91] LammM, SingerR F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
[92] PrasadK, SarkarR, GopinathK. Role of shrinkage pores, carbides on cyclic deformation behaviour of conventionally cast nickel base superalloy CM247LC? at 870 ℃ [J]. Mater. Sci. Eng., 2016, A654: 381
[93] WangQ G, ApelianD, LadosD A. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects [J]. J. Light Met., 2001, 1: 73
[94] JiangR, BullD J, EvangelouA, , et al. Strain accumulation and fatigue crack initiation at pores and carbides in a SX superalloy at room temperature [J]. Int. J. Fatigue, 2018, 114: 22
[95] NieB H, ZhaoZ H, LiuS, , et al. Very high cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ4 [J]. Materials, 2018, 11: 98
[96] TianS G, ZhouH H, ZhangJ H, , et al. The creep-damage behaviour of a single crystal nickel-base superalloy [J]. Acta Meta. Sin., 1998, 34: 57
[96] 田素贵, 周惠华, 张静华等. 一种单晶镍基合金的高温蠕变损伤[J]. 金属学报, 1998, 34: 57
[97] PardoenT, DumontD, DeschampsA, , et al. Grain boundary versus transgranular ductile failure [J]. J. Mech. Phys. Solids, 2003, 51: 637
[98] WenZ X, GouW X, YueZ F. Crack propagation paths and fracture of Ni-based single crystal [J]. Rare. Met. Mater. Eng., 2007, 36: 1549
[98] 温志勋, 苟文选, 岳珠峰. 镍基单晶裂纹扩展路径研究 [J]. 稀有金属材料与工程, 2007, 36: 1549
[99] TvergaardV. Material failure by void growth to coalescence [J]. Adv. Appl. Mech., 1989, 27: 83
[100] KomendaJ, HendersonP J. Growth of pores during the creep of a single crystal nickel-base superalloy [J]. Scr. Mater., 1997, 37: 1821
[101] Le GraverendJ B, CormierJ, KruchS, , et al. Microstructural parameters controlling high-temperature creep life of the nickel-base single-crystal superalloy MC2 [J]. Metall. Mater. Trans., 2012, 43A: 3988
[102] GursonA L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
[103] WenJ, HuangY, HwangK C, , et al. The modified Gurson model accounting for the void size effect [J]. Int. J. Plast., 2005, 21: 381
[104] WeckA, WilkinsonD S, MaireE. Observation of void nucleation, growth and coalescence in a model metal matrix composite using X-ray tomography [J]. Mate. Sci. Eng., 2008, A488: 435
[105] AtkinsonH V, DaviesS. Fundamental aspects of hot isostatic pressing: An overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
[106] FritzemeierL G. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy [A]. Superalloys 1988 [C]. Warrendale, PA: TMS, 198: 265
[107] ChangJ C, ChoiC, KimJ C, , et al. Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing [J]. J. Mater. Eng. Perform., 2003, 12: 420
[108] JeonJ H, GodfreyA B, BlenkinsopP A, , et al. Recrystallization in cast 45-2-2 XDTM titanium aluminide during hot isostatic pressing [J]. Mater. Sci. Eng., 1999, A271: 128
[109] LiuL. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
[109] 刘 林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
[110] LiuL, SunD J, HuangT W, , et al. Directional solidification under high thermal gradient and its application in superalloys processing [J]. Acta Metall. Sin., 2018, 54: 615
[110] 刘 林, 孙德建, 黄太文等. 高梯度定向凝固技术及其在高温合金制备中的应用 [J]. 金属学报, 2018, 54: 615
[111] MaD X. Development of single crystal solidification technology for production of superalloy turbine blades [J]. Acta Metall. Sin., 2015, 51: 1179
[111] 马德新. 高温合金叶片单晶凝固技术的新发展 [J]. 金属学报, 2015, 51: 1179
[112] KonterM, KatsE, HofmannN. A novel casting process for single crystal gas turbine components [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 189
[113] MaD X, Bührig- PolaczekA. Form and method of producing a casting [P]. German Pat, DE1020007014744, 2008
[114] MaD X, Bührig-PolaczekA. Application of a heat conductor technique in the production of single-crystal turbine blades [J]. Metall. Mater. Trans., 2009, 40B: 738
[115] ZhangJ, LouL H. Directional solidification assisted by liquid metal cooling [J]. J. Mater. Sci. Technol., 2007, 23: 289
[116] FrankeM M, HilbingerR M, LohmüllerA, , et al. The effect of liquid metal cooling on thermal gradients in directional solidification of superalloys: Thermal analysis [J]. J. Mater. Process. Technol., 2013, 213: 2081
[117] HuangS C, RutkowskiS F, GigliottiM X, , et al. Casting processes, casting apparatuses therefor, and castings produced thereby [P]. US Pat, 20100304161, 2010
[118] ShenJ, XuZ G, LuY Z, , et al. Reaction of Ni-based superalloy with liquid Sn during liquid-metal-cooled directional solidification [J]. Metall. Mater. Trans., 2018, 49A: 4003
[119] HofmeisterM, FrankeM M, KoernerC, , et al. Single crystal casting with fluidized carbon bed cooling: A process innovation for quality improvement and cost reduction [J]. Metall. Mater. Trans., 2017, 48B: 3132
[120] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy I. Starter block of grain selector [J]. Acta Metall. Sin., 2013, 49: 1508
[120] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: Ι. 引晶段 [J]. 金属学报, 2013, 49: 1508
[121] DaiH J, J-CGebelin, NewellM, , et al. Grain selection during solidification in spiral grain selector [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 367
[122] SunD J, LiuL, HuangT W, , et al. Formation of lateral sliver defects in the platform region of single-crystal superalloy turbine blades [J]. Metall. Mater. Trans., 2019, 50A: 1119
[123] AvesonJ W, TennantP A, FossB J, , et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
[124] ReinhartG, Nguyen-ThiH, Mangelinck-No?lN, , et al. In situ investigation of dendrite deformation during upward solidification of Al-7wt.%Si [J]. JOM, 2014, 66: 1408
[125] AvesonJ W, ReinhartG, Nguyen-ThiH, , et al. Dendrite bending during directional solidification [A]. Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 615
[126] SiredeyN, BoufoussiM, DenisS, , et al. Dendritic growth and crystalline quality of nickel-base single grains [J]. J. Cryst. Growth, 1993, 130: 132
[127] HenryS, MinghettiT, RappazM. Dendrite growth morphologies in aluminium alloys [J]. Acta Mater., 1998, 46: 6431
[128] HuangY Q, ShenJ, WangD, , et al. On the formation and evolution of sliver in Ni-base single crystal superalloy [J]. Metall. Mater. Trans. A, submitted
[129] PanwisawasC, MathurH, GebelinJ C, , et al. Prediction of recrystallization in investment cast single-crystal superalloys [J]. Acta Mater., 2013, 61: 51
[130] LiZ L, XiongJ C, XuQ Y, , et al. Deformation and recrystallization of single crystal nickel-based superalloys during investment casting [J]. J. Mater. Process. Technol., 2015, 217: 1
[131] WangL, PyczakF, ZhangJ, , et al. Effect of eutectics on plastic deformation and subsequent recrystallization in the single crystal nickel base superalloy CMSX-4 [J]. Mater. Sci. Eng., 2012, A532: 487
[132] WangL, XieG, ZhangJ, , et al. On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy [J]. Scr. Mater., 2006, 55: 457
[133] MathurH N, PanwisawasC, JonesC N, , et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys [J]. Acta Mater., 2017, 129: 112
[134] LiuL R, PengZ J, LinJ X, , et al. Study on nucleation site and mechanism of recrystallization behavior for DD6 nickel-base single crystal superalloy [J]. Foundry, 2014, 63: 1142
[134] 刘丽荣, 彭志江, 林佳新等. DD6单晶高温合金再结晶形核位置和机制研究 [J]. 铸造, 2014, 63: 1142
[135] LiZ L, ZhangD D, SuX L, , et al. Role of as-cast dendritic microstructure in recrystallization of a Ni-based single crystal superalloy [J]. J. Alloys Compd., 2016, 660: 115
[136] JamesA W, WagnerG P, SethB B. Cold spray repair process [P]. US Pat, US6491208B2, 2002
[137] CorriganJ, VogtR G, MihalisinJ R, , et al. Single crystal superalloy articles with reduced grain recrystallization [P]. Europe Pat, EP1038982A1, 2000
[138] SalkeldR W, FieldT T, AultE A. Preparation of single crystal superalloys for post-casting heat treatment [P]. US Pat, US 5413648, 1995
[139] XieG, ZhangJ, LouL H. Effect of cyclic recovery heat treatment on surface recrystallization of a directionally solidified superalloy [J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 491
[140] BabuS S, RaghavanN, RapleeJ, , et al. Additive manufacturing of nickel superalloys: Opportunities for innovation and challenges related to qualification [J]. Metall. Mater. Trans., 2018, 49A: 3764
[141] LiangY J, ChengX, LiJ, , et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: New processing—microstructure maps involving powder feeding [J]. Mater. Des., 2017, 130: 197
[142] PistorJ, K?rnerC. Formation of topologically closed packed phases within CMSX-4 single crystals produced by additive manufacturing [J]. Mater. Lett., 2019, 1X: 100003
[143] RamspergerM, K?rnerC. Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4?: From columnar grains to a single crystal [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 341
[144] K?rnerC, RamspergerM, MeidC, , et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing [J]. Metall. Mater. Trans., 2018, 49A: 3781
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[3] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[4] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.