Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 561-571    DOI: 10.11900/0412.1961.2023.00406
  研究论文 本期目录 | 过刊浏览 |
定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能
杨明辉, 李星吾, 孙崇昊, 阮莹()
西北工业大学 物理科学与技术学院 西安 710072
Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing
YANG Minghui, LI Xingwu, SUN Chonghao, RUAN Ying()
School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
Minghui YANG, Xingwu LI, Chonghao SUN, Ying RUAN. Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing[J]. Acta Metall Sin, 2025, 61(4): 561-571.

全文: PDF(4292 KB)   HTML
摘要: 

Monel K-500合金具有优异的耐腐蚀性能和良好的力学性能,被广泛应用于化工、船舶等领域。为研究定向凝固(DS)与固态相变双联协控技术对合金力学性能的作用机制,在不同生长速率下采用定向凝固和双联协控技术制备了Monel K-500合金,并对合金的微观组织和拉伸性能进行了分析。结果表明,定向凝固条件下合金的微观组织由γ相枝晶构成。当生长速率由100 μm/s减小至5 μm/s时,DS合金凝固时的温度梯度增大,在生长速率和温度梯度共同影响下枝晶组织逐渐粗化,合金中Cu元素偏析减弱且γ相织构强度增大,合金屈服强度与抗拉强度分别从248和421 MPa提高至288和487 MPa,延伸率由63.4%增大至69.9%。定向凝固与固态相变双联协控条件下,γʹ沉淀强化相析出,且微观偏析进一步减弱。随着生长速率减小,双联协控合金的屈服强度与抗拉强度增大,延伸率先减小后增大,裂纹由穿晶与沿晶混合扩展模式转变为以穿晶为主的扩展模式。断裂后合金中γ相晶体取向分析表明,合金中与择优生长方向<001>取向不一致的杂晶会引起晶粒内位错密度增大,从而导致合金延伸率降低。而晶粒细化有利于合金变形过程中应力的均匀分布,提高合金延伸率。相比于定向凝固,生长速率为5 μm/s时,双联协控合金的屈服强度与抗拉强度分别提高了34%和41%。

关键词 Monel K-500合金定向凝固固态相变生长速率微观组织力学性能    
Abstract

Monel K-500 alloy is a Ni-based alloy that is widely used in marine environments and chemical industries because of its exceptional corrosion resistance and mechanical properties. The synergetic modulation of directional solidification and thermal processing (DS-TP) technique combines DS and in situ heat treatment in a single experiment, thus eliminating the influence of environmental changes and avoiding aging effect. To investigate the effect of the DS-TP technique on the mechanical properties of the alloy, samples were prepared using DS alone and the DS-TP technique at different growth rates. Subsequently, the microstructures and mechanical properties of the samples were analyzed. In the DS experiments, an Al2O3 ceramic crucible (diameter: 10 mm) containing the alloy sample was heated using a graphite heater and an electromagnetic induction coil. As the sample was superheated to 200 K, it was immersed in the Ga-In-Sn liquid at a certain pulling rate. In the DS-TP experiments, the directionally solidified sample was in situ annealed at 1223 K for 1 h and then immersed into the liquid. Subsequently, the sample was subjected to an aging process at 923 K for 5 h. The microstructure of the directionally solidified Monel K-500 alloy showed columnar γ grains with pronounced <001> texture. When the growth rate decreased, the temperature gradient at the solid-liquid interface during directional solidification increased. Lower growth rates led to a coarser microstructure, lesser microsegregation of Cu, and fewer transverse grain boundaries. As the growth rate decreased from 100 μm/s to 5 μm/s, the yield strength, tensile strength, and elongation increased from 248 MPa, 421 MPa, and 63.4% to 288 MPa, 487 MPa, and 69.9%, respectively. Unlike the case of the directionally solidified alloys, the nanoscale γʹ hardening phase precipitated in the DS-TP-treated alloys and the degree of microsegregation decreased. Further, the yield strength and tensile strength increased from 368 and 640 MPa, respectively, to 386 and 686 MPa, respectively, as the growth rate decreased from 100 μm/s to 5 μm/s. The distribution of intergranular cracks in the fractography was similar to that of large-angle grain boundaries in the region closing the fracture. With the growth rate decreasing, intragranular cracks gradually appeared, and the number of intergranular cracks decreased. Moreover, grain deviation from the preferred growth orientation increased the dislocation density and decreased the elongation. Grain refinement promoted the homogeneous distribution of dislocations and caused a slight increase in the elongation. At a growth rate of 5 μm/s, the tensile strength and yield strength of the DS-TP-treated alloy increased by 34% and 41%, respectively.

Key wordsMonel K-500 alloy    directional solidification    thermal processing    growth rate    microstructure    mechanical property
收稿日期: 2023-10-07     
ZTFLH:  TG113.25  
基金资助:国家自然科学基金项目(52073232, 52225406, 52088101);陕西省科技创新团队项目(2021TD-14)
通讯作者: 阮 莹,ruany@nwpu.edu.cn,主要从事金属材料的空间凝固机理与性能研究
Corresponding author: RUAN Ying, professor, Tel: (029)88431669, E-mail: ruany@nwpu.edu.cn
作者简介: 杨明辉,男,1998年生,博士生
图1  Monel K-500合金的定向凝固(DS)和定向凝固与固态相变双联协控(DS-TP)实验方案
图2  Monel K-500合金拉伸试样及EBSD观察取样示意图
图3  不同生长速率下Monel K-500合金的定向凝固组织形貌及枝晶间距
图4  DS和DS-TP条件下Monel K-500合金中γ相的晶体取向分布
图5  DS和DS-TP条件下Monel K-500合金枝晶界面处的元素分布
图6  DS和DS-TP条件下Monel K-500合金微观组织TEM分析
图7  DS和DS-TP条件下Monel K-500合金的拉伸性能
图8  DS-TP条件下Monel K-500合金拉伸断裂试样断口附近晶体取向分布和断口形貌
图9  DS-TP条件下Monel K-500合金拉伸试样不同区域内局部取向差角分布图及其对应的极图
图10  DS-TP条件下Monel K-500合金断口纵截面晶体取向及断裂前后样品的取向差角分布图
1 Chen J, Wang J Z, Yan F Y, et al. Effect of applied potential on the tribocorrosion behaviors of Monel K500 alloy in artificial seawater [J]. Tribol. Int., 2015, 81: 1
2 Gouda V K, Selim I Z, Khedr A A, et al. Pitting corrosion behaviour of Monel-400 alloy in chloride solutions [J]. J. Mater. Sci. Technol., 1999, 15: 208
3 Hu Q F, Liu Y C, Zhang T, et al. Corrosion failure analysis on the copper alloy flange by experimental and numerical simulation [J]. Eng. Fail. Anal., 2020, 109: 104276
4 Kannan A R, Kumar S M, Pramod R, et al. Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing [J]. Mater. Lett., 2022, 308: 131262
5 Dey G K, Mukhopadhyay P. Precipitation in the Ni Cu-base alloy Monel K-500 [J]. Mater. Sci. Eng., 1986, 84: 177
6 Zhi Y Q, Zhang M C, Tang R Q, et al. Precipitation of strengthening phase in 718Plus alloy during early aging [J]. Chin. J. Nonferrous Met., 2023, 33: 55
6 支雅倩, 张孟超, 唐榕卿 等. 718Plus合金时效初期强化相的析出规律 [J]. 中国有色金属学报, 2023, 33: 55
7 Chen Z, Wang C C, Tang C, et al. Microstructure and mechanical properties of a Monel K-500 alloy fabricated by directed energy deposition [J]. Mater. Sci. Eng., 2022, A857: 144113
8 Harris Z D, Burns J T. The effect of isothermal heat treatment on hydrogen environment-assisted cracking susceptibility in Monel K-500 [J]. Mater. Sci. Eng., 2019, A764: 138249
9 Shoemaker L E, Smith G D. A century of Monel metal: 1906-2006 [J]. JOM, 2006, 58(9): 22
10 Es-Said O S, Zakharia K, Zakharia Z, et al. Failure analysis of K-Monel 500 (Ni-Cu-Al alloy) bolts [J]. Eng. Fail. Anal., 2000, 7: 323
11 Nayan N, Singh G, Souza P M, et al. Hot workability and microstructure control in Monel®400 (Ni-30Cu) alloy: An approach using processing map, constitutive equation and deformation modeling [J]. Mater. Sci. Eng., 2021, A825: 141855
12 Kim K M, Hurley P, Duarte J P. High-resolution prediction of quenching behavior using machine learning based on optical fiber temperature measurement [J]. Int. J. Heat Mass Transfer, 2022, 184: 122338
13 He Z B, Chen B Y, Zhou B W, et al. Effect of TiC precipitation on the corrosion behavior of Monel K500 alloy in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2023, 211: 110886
14 Arjmand M, Abbasi S M, Taheri A K, et al. Hot workability of cast and wrought Ni-42Cu alloy through hot tensile and compression tests [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1589
15 Ebrahimi G R, Momeni A, Ezatpour H R, et al. Dynamic recrystallization in Monel400 Ni-Cu alloy: Mechanism and role of twinning [J]. Mater. Sci. Eng., 2019, A744: 376
16 Marenych O O, Ding D, Pan Z, et al. Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys [J]. Addit. Manuf., 2018, 24: 30
17 Li X W, Ruan Y, Sun C H, et al. Distinct difference between peri-eutectic and eutectic growth in ternary Fe-Ni-Ti alloy [J]. Scr. Mater., 2023, 226: 115193
18 Li J, Ding R, Guo Q Y, et al. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus [J]. Mater. Sci. Eng., 2021, A812: 141113
19 Hofmeister M, Klein L, Miran H, et al. Corrosion behaviour of stainless steels and a single crystal superalloy in a ternary LiCl-KCl-CsCl molten salt [J]. Corros. Sci., 2015, 90: 46
20 Liu K L, Wang J S, Yang Y H, et al. An integrated microporosity model of 3D X-ray micro-tomography and directional solidification simulations for Ni-based single crystal superalloys [J]. Comput. Mater. Sci., 2021, 188: 110172
21 Gündüz M, Kaya H, Çadırlı E, et al. Effect of solidification processing parameters on the cellular spacings in the Al-0.1wt% Ti and Al-0.5wt% Ti alloys [J]. J. Alloys Compd., 2007, 439: 114
22 Li J Z, Li J G. Effects of solidification rate and temperature gradient on microstructure and crystal orientation of Co32Ni40Al28 alloys [J]. Mater. Lett., 2012, 68: 40
23 Xu Y K, Li C L, Huang Z H, et al. Microstructure and mechanical properties of CoCrCuFeNiTi0.8 high-entropy alloy prepared by directional solidification [J]. Chin. J. Nonferrous Met., 2021, 31: 1494
23 徐义库, 李聪玲, 黄兆皓 等. 定向凝固CoCrCuFeNiTi0.8高熵合金的组织与力学性能 [J]. 中国有色金属学报, 2021, 31: 1494
24 Liu T, Tao J, Cai X Y, et al. Effect of growth rate on microstructure evolution in directionally solidified Ti-47Al alloy [J]. Heliyon, 2022, 8: e08704
25 Yang X, Chen R R, Liu T, et al. Formation of dendrites and strengthening mechanism of dual-phase Ni36Co30Fe11Cr11Al6Ti6 HEA by directional solidification [J]. J. Alloys Compd., 2023, 948: 169806
26 Liu G H, Li X Z, Su Y Q, et al. Microstructure, microsegregation pattern and the formation of B2 phase in directionally solidified Ti-46Al-8Nb alloy [J]. J. Alloys Compd., 2012, 541: 275
27 Vaidya M, Pradeep K G, Murty B S, et al. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys [J]. Acta Mater., 2018, 146: 211
28 Lü M T, Li J L, Sun J D, et al. Design of cuboidal γ/γ' coherent microstructure and its stability in low-density Co-Ni-Al-Mo-Cr-Ti/Nb/Ta superalloys [J]. Acta Phys. Sin., 2022, 71: 118102
28 吕梦甜, 李金临, 孙九栋 等. 低密度Co-Ni-Al-Mo-Cr-Ti/Nb/Ta系列高温合金方形γ/γ'共格组织设计及其稳定性 [J]. 物理学报, 2022, 71: 118102
29 Gao Z M, Jie W Q, Liu Y Q, et al. Formation mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
29 高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
30 Gupta R, Sharma V, Prasad M J N V, et al. Orientation anisotropy and strain localization during elevated temperature tensile deformation of single crystal and bi-crystal Ni-based GTD444 superalloy [J]. Mater. Sci. Eng., 2023, A880: 145310
31 Sun H, Lin X P, Zhou B, et al. Microstructures and tensile deformation behavior of directionally solidified Mg-xGd-0.5Y alloys [J]. Acta Metall. Sin., 2020, 56: 340
31 孙 衡, 林小娉, 周 兵 等. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为 [J]. 金属学报, 2020, 56: 340
32 Martin N, Hor A, Copin E, et al. Correlation between microstructure heterogeneity and multi-scale mechanical behavior of hybrid LPBF-DED Inconel 625 [J]. J. Mater. Process. Technol., 2022, 303: 117542
33 Chandra S, Samal M K, Kumar N N, et al. Atomistically informed crystal plasticity analysis of deformation behavior of alloy 690 including grain boundary effects [J]. Materialia, 2021, 16: 101053
34 Bibhanshu N, Gussev M N, Massey C P, et al. Investigation of deformation mechanisms in an advanced FeCrAl alloy using in-situ SEM-EBSD testing [J]. Mater. Sci. Eng., 2022, A832: 142373
[1] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[2] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[3] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[4] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[5] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[6] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[7] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[8] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[9] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[10] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[11] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[12] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[13] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[14] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[15] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.