|
|
定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能 |
杨明辉, 李星吾, 孙崇昊, 阮莹( ) |
西北工业大学 物理科学与技术学院 西安 710072 |
|
Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing |
YANG Minghui, LI Xingwu, SUN Chonghao, RUAN Ying( ) |
School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
Minghui YANG,
Xingwu LI,
Chonghao SUN,
Ying RUAN.
Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing[J]. Acta Metall Sin, 2025, 61(4): 561-571.
1 |
Chen J, Wang J Z, Yan F Y, et al. Effect of applied potential on the tribocorrosion behaviors of Monel K500 alloy in artificial seawater [J]. Tribol. Int., 2015, 81: 1
|
2 |
Gouda V K, Selim I Z, Khedr A A, et al. Pitting corrosion behaviour of Monel-400 alloy in chloride solutions [J]. J. Mater. Sci. Technol., 1999, 15: 208
|
3 |
Hu Q F, Liu Y C, Zhang T, et al. Corrosion failure analysis on the copper alloy flange by experimental and numerical simulation [J]. Eng. Fail. Anal., 2020, 109: 104276
|
4 |
Kannan A R, Kumar S M, Pramod R, et al. Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing [J]. Mater. Lett., 2022, 308: 131262
|
5 |
Dey G K, Mukhopadhyay P. Precipitation in the Ni Cu-base alloy Monel K-500 [J]. Mater. Sci. Eng., 1986, 84: 177
|
6 |
Zhi Y Q, Zhang M C, Tang R Q, et al. Precipitation of strengthening phase in 718Plus alloy during early aging [J]. Chin. J. Nonferrous Met., 2023, 33: 55
|
6 |
支雅倩, 张孟超, 唐榕卿 等. 718Plus合金时效初期强化相的析出规律 [J]. 中国有色金属学报, 2023, 33: 55
|
7 |
Chen Z, Wang C C, Tang C, et al. Microstructure and mechanical properties of a Monel K-500 alloy fabricated by directed energy deposition [J]. Mater. Sci. Eng., 2022, A857: 144113
|
8 |
Harris Z D, Burns J T. The effect of isothermal heat treatment on hydrogen environment-assisted cracking susceptibility in Monel K-500 [J]. Mater. Sci. Eng., 2019, A764: 138249
|
9 |
Shoemaker L E, Smith G D. A century of Monel metal: 1906-2006 [J]. JOM, 2006, 58(9): 22
|
10 |
Es-Said O S, Zakharia K, Zakharia Z, et al. Failure analysis of K-Monel 500 (Ni-Cu-Al alloy) bolts [J]. Eng. Fail. Anal., 2000, 7: 323
|
11 |
Nayan N, Singh G, Souza P M, et al. Hot workability and microstructure control in Monel®400 (Ni-30Cu) alloy: An approach using processing map, constitutive equation and deformation modeling [J]. Mater. Sci. Eng., 2021, A825: 141855
|
12 |
Kim K M, Hurley P, Duarte J P. High-resolution prediction of quenching behavior using machine learning based on optical fiber temperature measurement [J]. Int. J. Heat Mass Transfer, 2022, 184: 122338
|
13 |
He Z B, Chen B Y, Zhou B W, et al. Effect of TiC precipitation on the corrosion behavior of Monel K500 alloy in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2023, 211: 110886
|
14 |
Arjmand M, Abbasi S M, Taheri A K, et al. Hot workability of cast and wrought Ni-42Cu alloy through hot tensile and compression tests [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1589
|
15 |
Ebrahimi G R, Momeni A, Ezatpour H R, et al. Dynamic recrystallization in Monel400 Ni-Cu alloy: Mechanism and role of twinning [J]. Mater. Sci. Eng., 2019, A744: 376
|
16 |
Marenych O O, Ding D, Pan Z, et al. Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys [J]. Addit. Manuf., 2018, 24: 30
|
17 |
Li X W, Ruan Y, Sun C H, et al. Distinct difference between peri-eutectic and eutectic growth in ternary Fe-Ni-Ti alloy [J]. Scr. Mater., 2023, 226: 115193
|
18 |
Li J, Ding R, Guo Q Y, et al. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus [J]. Mater. Sci. Eng., 2021, A812: 141113
|
19 |
Hofmeister M, Klein L, Miran H, et al. Corrosion behaviour of stainless steels and a single crystal superalloy in a ternary LiCl-KCl-CsCl molten salt [J]. Corros. Sci., 2015, 90: 46
|
20 |
Liu K L, Wang J S, Yang Y H, et al. An integrated microporosity model of 3D X-ray micro-tomography and directional solidification simulations for Ni-based single crystal superalloys [J]. Comput. Mater. Sci., 2021, 188: 110172
|
21 |
Gündüz M, Kaya H, Çadırlı E, et al. Effect of solidification processing parameters on the cellular spacings in the Al-0.1wt% Ti and Al-0.5wt% Ti alloys [J]. J. Alloys Compd., 2007, 439: 114
|
22 |
Li J Z, Li J G. Effects of solidification rate and temperature gradient on microstructure and crystal orientation of Co32Ni40Al28 alloys [J]. Mater. Lett., 2012, 68: 40
|
23 |
Xu Y K, Li C L, Huang Z H, et al. Microstructure and mechanical properties of CoCrCuFeNiTi0.8 high-entropy alloy prepared by directional solidification [J]. Chin. J. Nonferrous Met., 2021, 31: 1494
|
23 |
徐义库, 李聪玲, 黄兆皓 等. 定向凝固CoCrCuFeNiTi0.8高熵合金的组织与力学性能 [J]. 中国有色金属学报, 2021, 31: 1494
|
24 |
Liu T, Tao J, Cai X Y, et al. Effect of growth rate on microstructure evolution in directionally solidified Ti-47Al alloy [J]. Heliyon, 2022, 8: e08704
|
25 |
Yang X, Chen R R, Liu T, et al. Formation of dendrites and strengthening mechanism of dual-phase Ni36Co30Fe11Cr11Al6Ti6 HEA by directional solidification [J]. J. Alloys Compd., 2023, 948: 169806
|
26 |
Liu G H, Li X Z, Su Y Q, et al. Microstructure, microsegregation pattern and the formation of B2 phase in directionally solidified Ti-46Al-8Nb alloy [J]. J. Alloys Compd., 2012, 541: 275
|
27 |
Vaidya M, Pradeep K G, Murty B S, et al. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys [J]. Acta Mater., 2018, 146: 211
|
28 |
Lü M T, Li J L, Sun J D, et al. Design of cuboidal γ/γ' coherent microstructure and its stability in low-density Co-Ni-Al-Mo-Cr-Ti/Nb/Ta superalloys [J]. Acta Phys. Sin., 2022, 71: 118102
|
28 |
吕梦甜, 李金临, 孙九栋 等. 低密度Co-Ni-Al-Mo-Cr-Ti/Nb/Ta系列高温合金方形γ/γ'共格组织设计及其稳定性 [J]. 物理学报, 2022, 71: 118102
|
29 |
Gao Z M, Jie W Q, Liu Y Q, et al. Formation mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
|
29 |
高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
|
30 |
Gupta R, Sharma V, Prasad M J N V, et al. Orientation anisotropy and strain localization during elevated temperature tensile deformation of single crystal and bi-crystal Ni-based GTD444 superalloy [J]. Mater. Sci. Eng., 2023, A880: 145310
|
31 |
Sun H, Lin X P, Zhou B, et al. Microstructures and tensile deformation behavior of directionally solidified Mg-xGd-0.5Y alloys [J]. Acta Metall. Sin., 2020, 56: 340
|
31 |
孙 衡, 林小娉, 周 兵 等. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为 [J]. 金属学报, 2020, 56: 340
|
32 |
Martin N, Hor A, Copin E, et al. Correlation between microstructure heterogeneity and multi-scale mechanical behavior of hybrid LPBF-DED Inconel 625 [J]. J. Mater. Process. Technol., 2022, 303: 117542
|
33 |
Chandra S, Samal M K, Kumar N N, et al. Atomistically informed crystal plasticity analysis of deformation behavior of alloy 690 including grain boundary effects [J]. Materialia, 2021, 16: 101053
|
34 |
Bibhanshu N, Gussev M N, Massey C P, et al. Investigation of deformation mechanisms in an advanced FeCrAl alloy using in-situ SEM-EBSD testing [J]. Mater. Sci. Eng., 2022, A832: 142373
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|