|
|
机器学习型分子力场在金属材料相变与变形领域的研究进展 |
李志尚, 赵龙, 宗洪祥( ), 丁向东 |
西安交通大学 金属材料强度国家重点实验室 西安 710049 |
|
Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations |
LI Zhishang, ZHAO Long, ZONG Hongxiang( ), DING Xiangdong |
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
Zhishang LI,
Long ZHAO,
Hongxiang ZONG,
Xiangdong DING.
Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations[J]. Acta Metall Sin, 2024, 60(10): 1388-1404.
1 |
Christian J W. The Theory of Transformations in Metals and Alloys Theory [M]. Oxford: Pergamon Press, 2002: 1
|
2 |
Li J J, Deepak F L. In situ kinetic observations on crystal nucleation and growth [J]. Chem. Rev., 2022, 122: 16911
|
3 |
Schneider D K, Shi W, Andi B, et al. FMX—The frontier microfocusing macromolecular crystallography beamline at the national synchrotron light source II [J]. J. Synchrot. Radiat., 2021, 28: 650
|
4 |
Wang P, Cai W L, Zhang Q, et al. Physical design and performance research of two counter-rotating T0 choppers for the multi-physics neutron diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2023, 1055A: 168520
|
5 |
Liu T W, Liang L W, Raabe D, et al. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134: 244
doi: 10.1016/j.jmst.2022.06.023
|
6 |
Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64: 1045
|
7 |
Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55: 2471
pmid: 10032153
|
8 |
Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
|
9 |
Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
|
10 |
Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
|
11 |
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559: 547
|
12 |
Dragoni D, Daff T D, Csányi G, et al. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron [J]. Phys. Rev. Mater., 2018, 2: 013808
|
13 |
Hansen K, Biegler F, Ramakrishnan R, et al. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space [J]. J. Phys. Chem. Lett., 2015, 6: 2326
pmid: 26113956
|
14 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
15 |
Zeng J Q, Cao L Q, Xu M Y, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation [J]. Nat. Commun., 2020, 11: 5713
doi: 10.1038/s41467-020-19497-z
pmid: 33177517
|
16 |
Chenoweth K, Van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J]. J. Phys. Chem., 2008, 112A: 1040
|
17 |
Li S Z, Ding X D, Li J, et al. High-efficiency mechanical energy storage and retrieval using interfaces in nanowires [J]. Nano Lett., 2010, 10: 1774
doi: 10.1021/nl100263p
pmid: 20369897
|
18 |
Zhou Y X, Zhang W, Ma E, et al. Device-scale atomistic modelling of phase-change memory materials [J]. Nat. Electron., 2023, 6: 746
|
19 |
Wang G J, Sun Z M. Atomic insights into device-scale phase-change memory materials using machine learning potential [J]. Sci. Bull., 2023, 68: 3105
|
20 |
Artrith N, Kolpak A M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials [J]. Nano Lett., 2014, 14: 2670
doi: 10.1021/nl5005674
pmid: 24742028
|
21 |
Esterhuizen J A, Goldsmith B R, Linic S. Interpretable machine learning for knowledge generation in heterogeneous catalysis [J]. Nat. Catal., 2022, 5: 175
|
22 |
Wang G J, Wang C R, Zhang X G, et al. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations [J]. iScience, 2024, 27: 109673
|
23 |
Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: The force-matching method [J]. Europhys. Lett., 1994, 26: 583
|
24 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
25 |
Bartók A P, Csányi G. Gaussian approximation potentials: A brief tutorial introduction [J]. Int. J. Quantum Chem., 2015, 115: 1051
|
26 |
Shao Y Q, Hellström M, Mitev P D, et al. PiNN: A python library for building atomic neural networks of molecules and materials [J]. J. Chem. Inf. Model., 2020, 60: 1184
doi: 10.1021/acs.jcim.9b00994
pmid: 31935100
|
27 |
Behler J. RuNNer—A program for constructing high-dimensional neural network potentials [Z]. Göttingen: Universität Göttingen, 2020
|
28 |
Novikov I S, Gubaev K, Podryabinkin E V, et al. The MLIP package: Moment tensor potentials with MPI and active learning [J]. Mach. Learn., 2021, 2: 025002
|
29 |
Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
|
30 |
Chen C, Ong S P. A universal graph deep learning interatomic potential for the periodic table [J]. Nat. Comput. Sci., 2022, 2: 718
doi: 10.1038/s43588-022-00349-3
pmid: 38177366
|
31 |
Deng B W, Zhong P C, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling [J]. Nat. Mach. Intell., 2023, 5: 1031
|
32 |
Reinhardt A, Cheng B Q. Quantum-mechanical exploration of the phase diagram of water [J]. Nat. Commun., 2021, 12: 588
doi: 10.1038/s41467-020-20821-w
pmid: 33500405
|
33 |
Chen C, Ong S P. AtomSets as a hierarchical transfer learning framework for small and large materials datasets [J]. npj Comput. Mater., 2021, 7: 173
|
34 |
Kaliakin D S, Zaari R R, Varganov S A. 3D printed potential and free energy surfaces for teaching fundamental concepts in physical chemistry [J]. J. Chem. Educ., 2015, 92: 2106
|
35 |
Glass C W, Oganov A R, Hansen N. USPEX—Evolutionary crystal structure prediction [J]. Comput. Phys. Commun., 2006, 175: 713
|
36 |
Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys. Rev., 2010, 82B: 094116
|
37 |
Wang J Q, Li C C, Shin S, et al. Accelerated atomic data production in ab initio molecular dynamics with recurrent neural network for materials research [J]. J. Phys. Chem., 2020, 124C: 14838
|
38 |
Lima F S, Alves V M C, Araujo A C B. Metacontrol: A python based application for self-optimizing control using metamodels [J]. Comput. Chem. Eng., 2020, 140: 106979
|
39 |
Tang K J, Wan X L, Yang C. DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations [J]. J. Comput. Phys., 2023, 476: 111868
|
40 |
Laio A, Parrinello M. Escaping free-energy minima [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12562
pmid: 12271136
|
41 |
Montalenti F, Voter A F. Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics method [J]. J. Chem. Phys., 2002, 116: 4819
|
42 |
Berg B A, Neuhaus T. Multicanonical ensemble: A new approach to simulate first-order phase transitions [J]. Phys. Rev. Lett., 1992, 68: 9
pmid: 10045099
|
43 |
Wang F G, Landau D P. Efficient, multiple-range random walk algorithm to calculate the density of states [J]. Phys. Rev. Lett., 2001, 86: 2050
pmid: 11289852
|
44 |
Skilling J. Nested sampling for general Bayesian computation [J]. Bayesian Anal, 2006, 1: 833
|
45 |
Morozov A N, Lin S H. Accuracy and convergence of the Wang-Landau sampling algorithm [J]. Phys. Rev., 2007, 76E: 026701
|
46 |
Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
|
47 |
Huo H Y, Rupp M. Unified representation of molecules and crystals for machine learning [J]. Mach. Learn., 2022, 3: 045017
|
48 |
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J]. J. Chem. Phys., 2011, 134: 074106
|
49 |
Damewood J, Karaguesian J, Lunger J R, et al. Representations of materials for machine learning [J]. Annu. Rev. Mater. Res., 2023, 53: 399
|
50 |
Rupp M, Tkatchenko A, Müller K R, et al. Fast and accurate modeling of molecular atomization energies with machine learning [J]. Phys. Rev. Lett., 2012, 108: 058301
|
51 |
Sanchez J M, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems [J]. Physica, 1984, 128A: 334
|
52 |
Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints [A]. Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 [C]. Montreal: MIT Press, 2015: 28
|
53 |
Reiser P, Neubert M, Eberhard A, et al. Graph neural networks for materials science and chemistry [J]. Commun. Mater., 2022, 3: 93
|
54 |
Thompson A P, Swiler L P, Trott C R, et al. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials [J]. J. Comput. Phys., 2015, 285: 316
|
55 |
Shapeev A V. Moment tensor potentials: A class of systematically improvable interatomic potentials [J]. Multiscale Model. Simul., 2016, 14: 1153
|
56 |
Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations [J]. Phys. Rev., 2015, 92B: 094306
|
57 |
Bartók A P, Payne M C, Kondor R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons [J]. Phys. Rev. Lett., 2010, 104: 136403
|
58 |
Park C W, Kornbluth M, Vandermause J, et al. Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture [J]. npj Comput. Mater., 2021, 7: 73
|
59 |
Gasteiger J, Groß J, Günnemann S. Directional message passing for molecular graphs [DB/OL]. arXiv: 2003. 03123, 2020
|
60 |
Gasteiger J, Giri S, Margraf J T, et al. Fast and uncertainty-aware directional message passing for non-equilibrium molecules [DB/OL]. arXiv: 2011. 14115, 2020
|
61 |
Kung S Y. Kernel Methods and Machine Learning [M]. Cambridge: Cambridge University Press, 2014: 16
|
62 |
Bartók A P, Kermode J, Bernstein N, et al. Machine learning a general-purpose interatomic potential for silicon [J]. Phys. Rev., 2018, 8X: 041048
|
63 |
Sastry S, Austen Angell C. Liquid-liquid phase transition in supercooled silicon [J]. Nat. Mater., 2003, 2: 739
pmid: 14556000
|
64 |
Fan Z, Tanaka H. Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon [J]. Nat. Commun., 2024, 15: 368
doi: 10.1038/s41467-023-44332-6
pmid: 38228606
|
65 |
Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks [J]. Chem. Phys. Lett., 2004, 395: 210
|
66 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
67 |
Ghasemi S A, Hofstetter A, Saha S, et al. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network [J]. Phys. Rev., 2015, 92B: 045131
|
68 |
Khorshidi A, Peterson A A. Amp: A modular approach to machine learning in atomistic simulations [J]. Comput. Phys. Commun., 2016, 207: 310
|
69 |
Chen M S, Morawietz T, Mori H, et al. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials [J]. J. Chem. Phys., 2021, 155: 074801
|
70 |
Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Comput. Phys. Commun., 2022, 271: 108171
|
71 |
Zeng J Z, Zhang D, Lu D H, et al. DeePMD-kit v2: A software package for deep potential models [J]. J. Chem. Phys., 2023, 159: 054801
|
72 |
Lu D H, Wang H, Chen M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy [J]. Comput. Phys. Commun., 2021, 259: 107624
|
73 |
Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A] SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020
|
74 |
Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
|
75 |
Chen C, Ye W K, Zuo Y X, et al. Graph networks as a universal machine learning framework for molecules and crystals [J]. Chem. Mater., 2019, 31: 3564
doi: 10.1021/acs.chemmater.9b01294
|
76 |
Tran K, Ulissi Z W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution [J]. Nat. Catal., 2018, 1: 696
|
77 |
Park C W, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery [J]. Phys. Rev. Mater., 2020, 4: 063801
|
78 |
Gu G H, Jang J, Noh J, et al. Perovskite synthesizability using graph neural networks [J]. npj Comput. Mater., 2022, 8: 71
|
79 |
Lee J, Asahi R. Transfer learning for materials informatics using crystal graph convolutional neural network [J]. Comput. Mater. Sci., 2021, 190: 110314
|
80 |
Chanussot L, Das A, Goyal S, et al. Open catalyst 2020 (OC20) dataset and community challenges [J]. ACS Catal., 2021, 11: 6059
|
81 |
Wang G J, Sun Y Q, Zhou J, et al. PotentialMind: Graph convolutional machine learning potential for Sb-Te binary compounds of multiple stoichiometries [J]. J. Phys. Chem., 2023, 127C: 24724
|
82 |
Gasteiger J, Becker F, Günnemann S. GemNet: Universal directional graph neural networks for molecules [A]. 35th International Conference on Neural Information Processing Systems [C]. Red Hook: Curran Associates Inc., 2021: 6790
|
83 |
Xie S R, Rupp M, Hennig R G. Ultra-fast interpretable machine-learning potentials [J]. npj Comput. Mater., 2023, 9: 162
|
84 |
Ma Y G, Pang L G, Wang R, et al. Phase transition study meets machine learning [J]. Chin. Phys. Lett., 2023, 40: 122101
|
85 |
Salmenjoki H, Alava M J, Laurson L. Machine learning plastic deformation of crystals [J]. Nat. Commun., 2018, 9: 5307
doi: 10.1038/s41467-018-07737-2
pmid: 30546114
|
86 |
Pizzagalli L, Demenet J L, Rabier J. Theoretical study of pressure effect on the dislocation core properties in semiconductors [J]. Phys. Rev., 2009, 79B: 045203
|
87 |
Landa A, Klepeis J, Söderlind P, et al. Ab initio calculations of elastic constants of the bcc V-Nb system at high pressures [J]. J. Phys. Chem. Solids, 2006, 67: 2056
|
88 |
Marian J, Cai W, Bulatov V V. Dynamic transitions from smooth to rough to twinning in dislocation motion [J]. Nat. Mater., 2004, 3: 158
pmid: 14991017
|
89 |
Jin Z H, Gao H J, Gumbsch P. Energy radiation and limiting speeds of fast moving edge dislocations in tungsten [J]. Phys. Rev., 2008, 77B: 094303
|
90 |
Maresca F, Dragoni D, Csányi G, et al. Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential [J]. npj Comput. Mater., 2018, 4: 69
|
91 |
Li X Z, Han C X, Yue X D, et al. Influence of interfacial dislocation network on strain-rate sensitivity in Ni-based single crystal superalloys [J]. Scr. Mater., 2024, 240: 115838
|
92 |
Chen B, Li S Z, Ding J, et al. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys [J]. Scr. Mater., 2023, 222: 115048
|
93 |
Yin S, Zuo Y X, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order [J]. Nat. Commun., 2021, 12: 4873
doi: 10.1038/s41467-021-25134-0
pmid: 34381027
|
94 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
doi: 10.1073/pnas.1919136117
pmid: 32601202
|
95 |
Zheng H, Fey L T W, Li X G, et al. Multi-scale investigation of short-range order and dislocation glide in MoNbTi and TaNbTi multi-principal element alloys [J]. npj Comput. Mater., 2023, 9: 89
|
96 |
Li X G, Xu S Z, Zhang Q, et al. Complex strengthening mechanisms in nanocrystalline Ni-Mo alloys revealed by a machine-learning interatomic potential [J]. J. Alloy. Compd., 2023, 952: 169964
|
97 |
Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
|
98 |
Zhao L, Zong H X, Ding X D, et al. Anomalous dislocation core structure in shock compressed bcc high-entropy alloys [J]. Acta Mater., 2021, 209: 116801
|
99 |
Li H J, Zhao L, Ding X D, et al. The role of chemical disorder in β→ω phase transformation and deformation twinning in shock compressed Zr-Nb alloys [Z]. Available at SSRN 4717843
|
100 |
He R H, Hashimoto M, Karapetyan H, et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions [J]. Science, 2011, 331: 1579
|
101 |
Yeh A, Soh Y A, Brooke J, et al. Quantum phase transition in a common metal [J]. Nature, 2002, 419: 459
|
102 |
Gyorffy B L, Pindor A J, Staunton J, et al. A first-principles theory of ferromagnetic phase transitions in metals [J]. J. Phys., 1985, 15F: 1337
|
103 |
Jamieson J C. Crystal structures of titanium, zirconium, and hafnium at high pressures [J]. Science, 1963, 140: 72
pmid: 17746009
|
104 |
Zong H X, He P, Ding X D, et al. Nucleation mechanism for hcp→bcc phase transformation in shock-compressed Zr [J]. Phys. Rev., 2020, 101B: 144105
|
105 |
Zong H X, Luo Y F, Ding X D, et al. hcp→ω phase transition mechanisms in shocked zirconium: A machine learning based atomic simulation study [J]. Acta Mater., 2019, 162: 126
|
106 |
Zong H X, Pilania G, Ding X D, et al. Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning [J]. npj Comput. Mater., 2018, 4: 48
|
107 |
Wang H, Dmowski W, Wang Z, et al. Transformation pathway from alpha to omega and texture evolution in Zr via high-pressure torsion [J]. Appl. Phys. Lett., 2019, 114: 061903
|
108 |
Li H J, Zhao L, Zong H X, et al. Enhancing the stability of the ω phase of zirconium alloys via local interlayer twists [J]. Phys. Rev., 2023, 107B: 184117
|
109 |
Nitol M S, Dickel D E, Barrett C D. Machine learning models for predictive materials science from fundamental physics: An application to titanium and zirconium [J]. Acta Mater., 2022, 224: 117347
|
110 |
Deng X Z, Lang L, Mo Y F, et al. Solid-solid phase transition of tungsten induced by high pressure: A molecular dynamics simulation [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2980
|
111 |
Kruglov I A, Yanilkin A, Oganov A R, et al. Phase diagram of uranium from ab initio calculations and machine learning [J]. Phys. Rev., 2019, 100B: 174104
|
112 |
Tang H, Zhang Y, Li Q J, et al. High accuracy neural network interatomic potential for NiTi shape memory alloy [J]. Acta Mater., 2022, 238: 118217
|
113 |
Kostiuchenko T, Körmann F, Neugebauer J, et al. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials [J]. npj Comput. Mater., 2019, 5: 55
|
114 |
Bardeen J. Compressibilities of the alkali metals [J]. J. Chem. Phys., 1938, 6: 372
|
115 |
Gingrich N S, Heaton L. Structure of alkali metals in the liquid state [J]. J. Chem. Phys., 1961, 34: 873
|
116 |
Zhao L, Zong H X, Ding X D, et al. Commensurate-incommensurate phase transition of dense potassium simulated by machine-learned interatomic potential [J]. Phys. Rev., 2019, 100B: 220101
|
117 |
Zhao L, Zong H X, Ding X D, et al. Anomalous thermophysical properties and electride transition in fcc potassium [J]. Phys. Rev., 2021, 104B: 104107
|
118 |
Robinson V N, Zong H X, Ackland G J, et al. On the chain-melted phase of matter [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 10297
doi: 10.1073/pnas.1900985116
pmid: 30975752
|
119 |
Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9
pmid: 32461573
|
120 |
Zong H X, Robinson V N, Hermann A, et al. Free electron to electride transition in dense liquid potassium [J]. Nat. Phys., 2021, 17: 955
|
121 |
Polsin D N, Lazicki A, Gong X C, et al. Structural complexity in ramp-compressed sodium to 480 GPa [J]. Nat. Commun., 2022, 13: 2534
doi: 10.1038/s41467-022-29813-4
pmid: 35534461
|
122 |
Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
|
123 |
Kirklin S, Saal J E, Meredig B, et al. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies [J]. npj Comput. Mater., 2015, 1: 15010
|
124 |
Jain A, Hautier G, Moore C J, et al. A high-throughput infrastructure for density functional theory calculations [J]. Comput. Mater. Sci., 2011, 50: 2295
|
125 |
Landis D D, Hummelshøj J S, Nestorov S, et al. The computational materials repository [J]. Comput. Sci. Eng., 2012, 14: 51
|
126 |
Curtarolo S, Setyawan W, Wang S D, et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
|
127 |
Wang G J, Peng L Y, Li K Q, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
|
128 |
Wells B A, Chaffee A L. Ewald summation for molecular simulations [J]. J. Chem. Theory Comput., 2015, 11: 3684
doi: 10.1021/acs.jctc.5b00093
pmid: 26574452
|
129 |
Cerutti D S, Duke R E, Darden T A, et al. Staggered mesh Ewald: An extension of the smooth particle-mesh Ewald method adding great versatility [J]. J. Chem. Theory Comput., 2009, 5: 2322
doi: 10.1021/ct9001015
pmid: 20174456
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|