Please wait a minute...
金属学报  2024, Vol. 60 Issue (10): 1388-1404    DOI: 10.11900/0412.1961.2024.00139
  综述 本期目录 | 过刊浏览 |
机器学习型分子力场在金属材料相变与变形领域的研究进展
李志尚, 赵龙, 宗洪祥(), 丁向东
西安交通大学 金属材料强度国家重点实验室 西安 710049
Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations
LI Zhishang, ZHAO Long, ZONG Hongxiang(), DING Xiangdong
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
Zhishang LI, Long ZHAO, Hongxiang ZONG, Xiangdong DING. Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations[J]. Acta Metall Sin, 2024, 60(10): 1388-1404.

全文: PDF(4612 KB)   HTML
摘要: 

金属材料在服役过程中通常伴随着相变与形变,深入理解其背后的微观机制,对于开发能够满足国家重大需求的新型金属材料至关重要。分子动力学模拟技术,特别是机器学习型分子力场赋能的分子动力学模拟技术,作为一种新的原子模拟范式,正逐渐成为从原子尺度理解金属相变与形变的强有力工具。本文综述了近年来机器学习型分子力场在金属材料相变与形变中的研究进展。首先简述了机器学习型分子力场的基本原理与发展历程;聚焦金属材料的相变与形变过程,着重阐述了机器学习型分子力场对其相变动力学与形变微观机制在原子尺度上的理解;针对现有机器学习型分子力场在金属材料相变与形变研究中存在的壁垒进行总结,并对未来可能的发展方向提出了展望。

关键词 机器学习型分子力场相变与形变分子动力学模拟金属材料    
Abstract

A comprehensive understanding of the microscopic mechanisms underlying phase transitions and deformations in metallic materials is crucial for developing new materials that meet the nation's essential needs. Molecular dynamic simulation techniques, particularly those powered by machine-learning molecular force fields, are emerging as potent tools for unraveling atomic-scale phenomena. In this study, recent advancements in machine-learning molecular force fields were reviewed to investigate metallic phase transitions and deformations. First, the fundamental principles and evolution of machine-learning molecular force fields were introduced. Then, the phase transformation and deformation of metals were examined, providing insights into the kinetics of phase transitions and microscopic mechanisms. Finally, the challenges faced by current machine-learning molecular force fields in studying metallic phase transformations and deformations were identified, and a glimpse into future research directions was discussed.

Key wordsmachine learning force field    phase transformation and deformation    molecular dynamics simulation    metallic material
收稿日期: 2024-05-08     
ZTFLH:  TB31  
基金资助:国家重点研发计划项目(2022YFB3707601);国家自然科学基金项目(52171011,52322103,12304026)
通讯作者: 宗洪祥,zonghust@mail.xjtu.edu.cn,主要从事金属材料相变与强韧化研究
Corresponding author: ZONG Hongxiang, professor, Tel: 15029963406, E-mail: zonghust@mail.xjtu.edu.cn
作者简介: 李志尚,男,1999年生,硕士
图1  机器学习型分子力场(MLFFs)的构造示意图[32~34]
图2  DeepMD模型的示意图:下方的框架是其中深度神经网络的放大图;原子i所有相邻原子之间的距离矩阵{ Rij },即环境矩阵,首先转换为描述矩阵{ Dij },再传入到隐藏层计算原子能量Ei[66]
图3  基于图表示的原子描述符构造示意图。初始图由原子属性集V = {vi }、键属性集E = {(ek, rk, sk )}和全局状态属性 u 表示。在第一个更新步骤中更新键属性。信息从形成键的原子、状态属性和前一个键属性流向新的键属性。随后,通过这3个信息先后更新原子属性和全局状态属性。最终形成新的图[75]
图4  不同MLFFs精度与效率的互制关系[83]
图5  MLFFs在传统金属材料准静态加载过程中位错动力学研究中的应用,包括:bcc-Fe的螺位错核心结构,bcc-Fe螺位错的扭结运动模式,1/2<110>螺位错与预先存在位错的Ni/Ni3Al半共格界面相互作用的应力与反应路径的依赖关系,及第一和第二相互作用阶段能量势垒随外部应力的变化[90,91]
图6  MLFFs在高熵合金准静态加载过程中位错动力学研究中的应用[93,94]
图7  MLFFs在金属纳米多晶力学行为中的应用[97]
图8  MLFFs在金属材料动态加载变形机制研究中的应用[98,99]
图9  MLFFs在过渡金属元素Zr相变机制研究中的应用[104,106]
图10  MLFFs在过渡金属材料Zr-Nb合金相变机制研究中的应用:Zr-10Nb单晶形成局部层间扭转的分子动力学模拟及Zr-Nb合金的分子动力学模拟相图[108]
图11  MLFFs在碱金属K高压固态结构相变机制研究中的应用[117,118]
图12  MLFFs在碱金属K液态结构相变机制研究中的应用[120]
1 Christian J W. The Theory of Transformations in Metals and Alloys Theory [M]. Oxford: Pergamon Press, 2002: 1
2 Li J J, Deepak F L. In situ kinetic observations on crystal nucleation and growth [J]. Chem. Rev., 2022, 122: 16911
3 Schneider D K, Shi W, Andi B, et al. FMX—The frontier microfocusing macromolecular crystallography beamline at the national synchrotron light source II [J]. J. Synchrot. Radiat., 2021, 28: 650
4 Wang P, Cai W L, Zhang Q, et al. Physical design and performance research of two counter-rotating T0 choppers for the multi-physics neutron diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2023, 1055A: 168520
5 Liu T W, Liang L W, Raabe D, et al. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134: 244
doi: 10.1016/j.jmst.2022.06.023
6 Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64: 1045
7 Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55: 2471
pmid: 10032153
8 Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
9 Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
10 Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
11 Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559: 547
12 Dragoni D, Daff T D, Csányi G, et al. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron [J]. Phys. Rev. Mater., 2018, 2: 013808
13 Hansen K, Biegler F, Ramakrishnan R, et al. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space [J]. J. Phys. Chem. Lett., 2015, 6: 2326
pmid: 26113956
14 Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
15 Zeng J Q, Cao L Q, Xu M Y, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation [J]. Nat. Commun., 2020, 11: 5713
doi: 10.1038/s41467-020-19497-z pmid: 33177517
16 Chenoweth K, Van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J]. J. Phys. Chem., 2008, 112A: 1040
17 Li S Z, Ding X D, Li J, et al. High-efficiency mechanical energy storage and retrieval using interfaces in nanowires [J]. Nano Lett., 2010, 10: 1774
doi: 10.1021/nl100263p pmid: 20369897
18 Zhou Y X, Zhang W, Ma E, et al. Device-scale atomistic modelling of phase-change memory materials [J]. Nat. Electron., 2023, 6: 746
19 Wang G J, Sun Z M. Atomic insights into device-scale phase-change memory materials using machine learning potential [J]. Sci. Bull., 2023, 68: 3105
20 Artrith N, Kolpak A M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials [J]. Nano Lett., 2014, 14: 2670
doi: 10.1021/nl5005674 pmid: 24742028
21 Esterhuizen J A, Goldsmith B R, Linic S. Interpretable machine learning for knowledge generation in heterogeneous catalysis [J]. Nat. Catal., 2022, 5: 175
22 Wang G J, Wang C R, Zhang X G, et al. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations [J]. iScience, 2024, 27: 109673
23 Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: The force-matching method [J]. Europhys. Lett., 1994, 26: 583
24 Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
25 Bartók A P, Csányi G. Gaussian approximation potentials: A brief tutorial introduction [J]. Int. J. Quantum Chem., 2015, 115: 1051
26 Shao Y Q, Hellström M, Mitev P D, et al. PiNN: A python library for building atomic neural networks of molecules and materials [J]. J. Chem. Inf. Model., 2020, 60: 1184
doi: 10.1021/acs.jcim.9b00994 pmid: 31935100
27 Behler J. RuNNer—A program for constructing high-dimensional neural network potentials [Z]. Göttingen: Universität Göttingen, 2020
28 Novikov I S, Gubaev K, Podryabinkin E V, et al. The MLIP package: Moment tensor potentials with MPI and active learning [J]. Mach. Learn., 2021, 2: 025002
29 Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
30 Chen C, Ong S P. A universal graph deep learning interatomic potential for the periodic table [J]. Nat. Comput. Sci., 2022, 2: 718
doi: 10.1038/s43588-022-00349-3 pmid: 38177366
31 Deng B W, Zhong P C, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling [J]. Nat. Mach. Intell., 2023, 5: 1031
32 Reinhardt A, Cheng B Q. Quantum-mechanical exploration of the phase diagram of water [J]. Nat. Commun., 2021, 12: 588
doi: 10.1038/s41467-020-20821-w pmid: 33500405
33 Chen C, Ong S P. AtomSets as a hierarchical transfer learning framework for small and large materials datasets [J]. npj Comput. Mater., 2021, 7: 173
34 Kaliakin D S, Zaari R R, Varganov S A. 3D printed potential and free energy surfaces for teaching fundamental concepts in physical chemistry [J]. J. Chem. Educ., 2015, 92: 2106
35 Glass C W, Oganov A R, Hansen N. USPEX—Evolutionary crystal structure prediction [J]. Comput. Phys. Commun., 2006, 175: 713
36 Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys. Rev., 2010, 82B: 094116
37 Wang J Q, Li C C, Shin S, et al. Accelerated atomic data production in ab initio molecular dynamics with recurrent neural network for materials research [J]. J. Phys. Chem., 2020, 124C: 14838
38 Lima F S, Alves V M C, Araujo A C B. Metacontrol: A python based application for self-optimizing control using metamodels [J]. Comput. Chem. Eng., 2020, 140: 106979
39 Tang K J, Wan X L, Yang C. DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations [J]. J. Comput. Phys., 2023, 476: 111868
40 Laio A, Parrinello M. Escaping free-energy minima [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12562
pmid: 12271136
41 Montalenti F, Voter A F. Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics method [J]. J. Chem. Phys., 2002, 116: 4819
42 Berg B A, Neuhaus T. Multicanonical ensemble: A new approach to simulate first-order phase transitions [J]. Phys. Rev. Lett., 1992, 68: 9
pmid: 10045099
43 Wang F G, Landau D P. Efficient, multiple-range random walk algorithm to calculate the density of states [J]. Phys. Rev. Lett., 2001, 86: 2050
pmid: 11289852
44 Skilling J. Nested sampling for general Bayesian computation [J]. Bayesian Anal, 2006, 1: 833
45 Morozov A N, Lin S H. Accuracy and convergence of the Wang-Landau sampling algorithm [J]. Phys. Rev., 2007, 76E: 026701
46 Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
47 Huo H Y, Rupp M. Unified representation of molecules and crystals for machine learning [J]. Mach. Learn., 2022, 3: 045017
48 Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J]. J. Chem. Phys., 2011, 134: 074106
49 Damewood J, Karaguesian J, Lunger J R, et al. Representations of materials for machine learning [J]. Annu. Rev. Mater. Res., 2023, 53: 399
50 Rupp M, Tkatchenko A, Müller K R, et al. Fast and accurate modeling of molecular atomization energies with machine learning [J]. Phys. Rev. Lett., 2012, 108: 058301
51 Sanchez J M, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems [J]. Physica, 1984, 128A: 334
52 Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints [A]. Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 [C]. Montreal: MIT Press, 2015: 28
53 Reiser P, Neubert M, Eberhard A, et al. Graph neural networks for materials science and chemistry [J]. Commun. Mater., 2022, 3: 93
54 Thompson A P, Swiler L P, Trott C R, et al. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials [J]. J. Comput. Phys., 2015, 285: 316
55 Shapeev A V. Moment tensor potentials: A class of systematically improvable interatomic potentials [J]. Multiscale Model. Simul., 2016, 14: 1153
56 Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations [J]. Phys. Rev., 2015, 92B: 094306
57 Bartók A P, Payne M C, Kondor R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons [J]. Phys. Rev. Lett., 2010, 104: 136403
58 Park C W, Kornbluth M, Vandermause J, et al. Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture [J]. npj Comput. Mater., 2021, 7: 73
59 Gasteiger J, Groß J, Günnemann S. Directional message passing for molecular graphs [DB/OL]. arXiv: 2003. 03123, 2020
60 Gasteiger J, Giri S, Margraf J T, et al. Fast and uncertainty-aware directional message passing for non-equilibrium molecules [DB/OL]. arXiv: 2011. 14115, 2020
61 Kung S Y. Kernel Methods and Machine Learning [M]. Cambridge: Cambridge University Press, 2014: 16
62 Bartók A P, Kermode J, Bernstein N, et al. Machine learning a general-purpose interatomic potential for silicon [J]. Phys. Rev., 2018, 8X: 041048
63 Sastry S, Austen Angell C. Liquid-liquid phase transition in supercooled silicon [J]. Nat. Mater., 2003, 2: 739
pmid: 14556000
64 Fan Z, Tanaka H. Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon [J]. Nat. Commun., 2024, 15: 368
doi: 10.1038/s41467-023-44332-6 pmid: 38228606
65 Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks [J]. Chem. Phys. Lett., 2004, 395: 210
66 Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
67 Ghasemi S A, Hofstetter A, Saha S, et al. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network [J]. Phys. Rev., 2015, 92B: 045131
68 Khorshidi A, Peterson A A. Amp: A modular approach to machine learning in atomistic simulations [J]. Comput. Phys. Commun., 2016, 207: 310
69 Chen M S, Morawietz T, Mori H, et al. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials [J]. J. Chem. Phys., 2021, 155: 074801
70 Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Comput. Phys. Commun., 2022, 271: 108171
71 Zeng J Z, Zhang D, Lu D H, et al. DeePMD-kit v2: A software package for deep potential models [J]. J. Chem. Phys., 2023, 159: 054801
72 Lu D H, Wang H, Chen M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy [J]. Comput. Phys. Commun., 2021, 259: 107624
73 Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A] SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020
74 Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
75 Chen C, Ye W K, Zuo Y X, et al. Graph networks as a universal machine learning framework for molecules and crystals [J]. Chem. Mater., 2019, 31: 3564
doi: 10.1021/acs.chemmater.9b01294
76 Tran K, Ulissi Z W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution [J]. Nat. Catal., 2018, 1: 696
77 Park C W, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery [J]. Phys. Rev. Mater., 2020, 4: 063801
78 Gu G H, Jang J, Noh J, et al. Perovskite synthesizability using graph neural networks [J]. npj Comput. Mater., 2022, 8: 71
79 Lee J, Asahi R. Transfer learning for materials informatics using crystal graph convolutional neural network [J]. Comput. Mater. Sci., 2021, 190: 110314
80 Chanussot L, Das A, Goyal S, et al. Open catalyst 2020 (OC20) dataset and community challenges [J]. ACS Catal., 2021, 11: 6059
81 Wang G J, Sun Y Q, Zhou J, et al. PotentialMind: Graph convolutional machine learning potential for Sb-Te binary compounds of multiple stoichiometries [J]. J. Phys. Chem., 2023, 127C: 24724
82 Gasteiger J, Becker F, Günnemann S. GemNet: Universal directional graph neural networks for molecules [A]. 35th International Conference on Neural Information Processing Systems [C]. Red Hook: Curran Associates Inc., 2021: 6790
83 Xie S R, Rupp M, Hennig R G. Ultra-fast interpretable machine-learning potentials [J]. npj Comput. Mater., 2023, 9: 162
84 Ma Y G, Pang L G, Wang R, et al. Phase transition study meets machine learning [J]. Chin. Phys. Lett., 2023, 40: 122101
85 Salmenjoki H, Alava M J, Laurson L. Machine learning plastic deformation of crystals [J]. Nat. Commun., 2018, 9: 5307
doi: 10.1038/s41467-018-07737-2 pmid: 30546114
86 Pizzagalli L, Demenet J L, Rabier J. Theoretical study of pressure effect on the dislocation core properties in semiconductors [J]. Phys. Rev., 2009, 79B: 045203
87 Landa A, Klepeis J, Söderlind P, et al. Ab initio calculations of elastic constants of the bcc V-Nb system at high pressures [J]. J. Phys. Chem. Solids, 2006, 67: 2056
88 Marian J, Cai W, Bulatov V V. Dynamic transitions from smooth to rough to twinning in dislocation motion [J]. Nat. Mater., 2004, 3: 158
pmid: 14991017
89 Jin Z H, Gao H J, Gumbsch P. Energy radiation and limiting speeds of fast moving edge dislocations in tungsten [J]. Phys. Rev., 2008, 77B: 094303
90 Maresca F, Dragoni D, Csányi G, et al. Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential [J]. npj Comput. Mater., 2018, 4: 69
91 Li X Z, Han C X, Yue X D, et al. Influence of interfacial dislocation network on strain-rate sensitivity in Ni-based single crystal superalloys [J]. Scr. Mater., 2024, 240: 115838
92 Chen B, Li S Z, Ding J, et al. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys [J]. Scr. Mater., 2023, 222: 115048
93 Yin S, Zuo Y X, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order [J]. Nat. Commun., 2021, 12: 4873
doi: 10.1038/s41467-021-25134-0 pmid: 34381027
94 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
doi: 10.1073/pnas.1919136117 pmid: 32601202
95 Zheng H, Fey L T W, Li X G, et al. Multi-scale investigation of short-range order and dislocation glide in MoNbTi and TaNbTi multi-principal element alloys [J]. npj Comput. Mater., 2023, 9: 89
96 Li X G, Xu S Z, Zhang Q, et al. Complex strengthening mechanisms in nanocrystalline Ni-Mo alloys revealed by a machine-learning interatomic potential [J]. J. Alloy. Compd., 2023, 952: 169964
97 Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
98 Zhao L, Zong H X, Ding X D, et al. Anomalous dislocation core structure in shock compressed bcc high-entropy alloys [J]. Acta Mater., 2021, 209: 116801
99 Li H J, Zhao L, Ding X D, et al. The role of chemical disorder in βω phase transformation and deformation twinning in shock compressed Zr-Nb alloys [Z]. Available at SSRN 4717843
100 He R H, Hashimoto M, Karapetyan H, et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions [J]. Science, 2011, 331: 1579
101 Yeh A, Soh Y A, Brooke J, et al. Quantum phase transition in a common metal [J]. Nature, 2002, 419: 459
102 Gyorffy B L, Pindor A J, Staunton J, et al. A first-principles theory of ferromagnetic phase transitions in metals [J]. J. Phys., 1985, 15F: 1337
103 Jamieson J C. Crystal structures of titanium, zirconium, and hafnium at high pressures [J]. Science, 1963, 140: 72
pmid: 17746009
104 Zong H X, He P, Ding X D, et al. Nucleation mechanism for hcp→bcc phase transformation in shock-compressed Zr [J]. Phys. Rev., 2020, 101B: 144105
105 Zong H X, Luo Y F, Ding X D, et al. hcp→ω phase transition mechanisms in shocked zirconium: A machine learning based atomic simulation study [J]. Acta Mater., 2019, 162: 126
106 Zong H X, Pilania G, Ding X D, et al. Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning [J]. npj Comput. Mater., 2018, 4: 48
107 Wang H, Dmowski W, Wang Z, et al. Transformation pathway from alpha to omega and texture evolution in Zr via high-pressure torsion [J]. Appl. Phys. Lett., 2019, 114: 061903
108 Li H J, Zhao L, Zong H X, et al. Enhancing the stability of the ω phase of zirconium alloys via local interlayer twists [J]. Phys. Rev., 2023, 107B: 184117
109 Nitol M S, Dickel D E, Barrett C D. Machine learning models for predictive materials science from fundamental physics: An application to titanium and zirconium [J]. Acta Mater., 2022, 224: 117347
110 Deng X Z, Lang L, Mo Y F, et al. Solid-solid phase transition of tungsten induced by high pressure: A molecular dynamics simulation [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2980
111 Kruglov I A, Yanilkin A, Oganov A R, et al. Phase diagram of uranium from ab initio calculations and machine learning [J]. Phys. Rev., 2019, 100B: 174104
112 Tang H, Zhang Y, Li Q J, et al. High accuracy neural network interatomic potential for NiTi shape memory alloy [J]. Acta Mater., 2022, 238: 118217
113 Kostiuchenko T, Körmann F, Neugebauer J, et al. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials [J]. npj Comput. Mater., 2019, 5: 55
114 Bardeen J. Compressibilities of the alkali metals [J]. J. Chem. Phys., 1938, 6: 372
115 Gingrich N S, Heaton L. Structure of alkali metals in the liquid state [J]. J. Chem. Phys., 1961, 34: 873
116 Zhao L, Zong H X, Ding X D, et al. Commensurate-incommensurate phase transition of dense potassium simulated by machine-learned interatomic potential [J]. Phys. Rev., 2019, 100B: 220101
117 Zhao L, Zong H X, Ding X D, et al. Anomalous thermophysical properties and electride transition in fcc potassium [J]. Phys. Rev., 2021, 104B: 104107
118 Robinson V N, Zong H X, Ackland G J, et al. On the chain-melted phase of matter [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 10297
doi: 10.1073/pnas.1900985116 pmid: 30975752
119 Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9 pmid: 32461573
120 Zong H X, Robinson V N, Hermann A, et al. Free electron to electride transition in dense liquid potassium [J]. Nat. Phys., 2021, 17: 955
121 Polsin D N, Lazicki A, Gong X C, et al. Structural complexity in ramp-compressed sodium to 480 GPa [J]. Nat. Commun., 2022, 13: 2534
doi: 10.1038/s41467-022-29813-4 pmid: 35534461
122 Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
123 Kirklin S, Saal J E, Meredig B, et al. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies [J]. npj Comput. Mater., 2015, 1: 15010
124 Jain A, Hautier G, Moore C J, et al. A high-throughput infrastructure for density functional theory calculations [J]. Comput. Mater. Sci., 2011, 50: 2295
125 Landis D D, Hummelshøj J S, Nestorov S, et al. The computational materials repository [J]. Comput. Sci. Eng., 2012, 14: 51
126 Curtarolo S, Setyawan W, Wang S D, et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
127 Wang G J, Peng L Y, Li K Q, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
128 Wells B A, Chaffee A L. Ewald summation for molecular simulations [J]. J. Chem. Theory Comput., 2015, 11: 3684
doi: 10.1021/acs.jctc.5b00093 pmid: 26574452
129 Cerutti D S, Duke R E, Darden T A, et al. Staggered mesh Ewald: An extension of the smooth particle-mesh Ewald method adding great versatility [J]. J. Chem. Theory Comput., 2009, 5: 2322
doi: 10.1021/ct9001015 pmid: 20174456
[1] 陈克新, 张龙. 2023年度金属材料学科国家自然科学基金管理工作综述[J]. 金属学报, 2024, 60(4): 417-424.
[2] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[3] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[4] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[5] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[8] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
[9] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[10] 王鲁宁, 刘丽君, 岩雨, 杨坤, 陆黎立. 蛋白质吸附对医用金属材料体外腐蚀行为的影响[J]. 金属学报, 2021, 57(1): 1-15.
[11] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] 陈闽东, 张帆, 刘智勇, 杨朝晖, 丁国清, 李晓刚. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J]. 金属学报, 2018, 54(9): 1311-1321.
[15] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.