Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 211-225    DOI: 10.11900/0412.1961.2023.00493
  研究论文 本期目录 | 过刊浏览 |
电弧熔丝增材制造Mg/Mg双金属的组织与力学性能
韩启飞, 狄兴隆, 郭跃岭(), 叶水俊, 郑元翾, 刘长猛
北京理工大学 机械与车辆学院 北京 100081
Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing
HAN Qifei, DI Xinglong, GUO Yueling(), YE Shuijun, ZHENG Yuanxuan, LIU Changmeng
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
引用本文:

韩启飞, 狄兴隆, 郭跃岭, 叶水俊, 郑元翾, 刘长猛. 电弧熔丝增材制造Mg/Mg双金属的组织与力学性能[J]. 金属学报, 2025, 61(2): 211-225.
Qifei HAN, Xinglong DI, Yueling GUO, Shuijun YE, Yuanxuan ZHENG, Changmeng LIU. Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing[J]. Acta Metall Sin, 2025, 61(2): 211-225.

全文: PDF(4822 KB)   HTML
摘要: 

传统工艺制备Mg/Mg双金属件流程复杂、成形效率低,电弧熔丝增材制造(WAAM)在提高大尺寸双金属件成形效率方面具有技术优势。为提高大尺寸Mg/Mg双金属件的成形效率和界面性能,本工作采用WAAM技术制备了Mg-Al-Si/Mg-Gd-Y-Zn双金属薄壁,研究了双金属件的宏观形貌、微观组织、显微硬度和力学性能。结果表明,该双金属件通过WAAM实现了良好的界面结合,双金属的界面为厚度约1.4 mm的过渡区。EPMA结果表明,过渡区内形成了成分梯度,从Mg-Al-Si合金侧到Mg-Gd-Y-Zn合金侧,Al和Si元素的含量逐渐降低,而Gd、Y和Zn元素的含量逐步增加。根据非平衡凝固相图和微观组织分析,双金属件由3个区域组成,分别是存在汉字状Mg2Si相的Mg-Al-Si区,具有粒状Mg2Si相、Mg3(Gd, Y)相及Mg5(Gd, Y)相的过渡区和以Mg12Zn(Gd, Y)相为主的Mg-Gd-Y-Zn合金区。自Mg-Al-Si侧向Mg-Gd-Y-Zn侧,过渡区内的显微硬度从57 HV0.5连续增加到90 HV0.5。室温拉伸结果表明,双金属的强度接近Mg-Al-Si合金,极限抗拉强度和屈服强度分别为236.8和102.2 MPa,延伸率和加工硬化指数接近Mg-Gd-Y-Zn合金,分别为11.0%和0.323。WAAM Mg-Al-Si/Mg-Gd-Y-Zn双金属件的断裂位置位于过渡区,Mg-Al-Si合金的断裂机制以韧性断裂为主,而双金属和Mg-Gd-Y-Zn合金的断裂机理均为准解理断裂。

关键词 电弧熔丝增材制造双金属件组织强化机理    
Abstract

Mg/Mg bimetallic components, especially Mg-Al-Si/Mg-Gd-Y-Zn bimetals, hold promise for applications in the aerospace and automotive industries as structural materials because of their potential advantages of low cost, lightweight, high strength, and high plasticity. At present, Mg/Mg bimetallic components are primarily fabricated via extrusion and compound casting. However, these conventional processes are complex and have low forming efficiency. Recently, rapid advancements in additive manufacturing have enabled the real-time manufacturing of bimetallic structural components. In particular, wire arc additive manufacturing (WAAM) offers technical advantages for improving the forming efficiency of large-sized bimetallic components. Herein, to enhance the forming efficiency and interfacial performance of large-sized Mg/Mg bimetallic components, a thin-walled Mg-Al-Si/Mg-Gd-Y-Zn bimetallic component was fabricated using WAAM technology. Specifically, a Mg-Al-Si alloy thin wall was first deposited and then cooled to room temperature over a period of time. Subsequently, the top layer of the Mg-Al-Si alloy thin wall was remelted, followed by the deposition of the Mg-Gd-Y-Zn alloy. Further, the macroscopic morphology, microstructure, microhardness, and mechanical properties of the bimetallic component were examined. Based on the macroscopic morphology, bimetallic components exhibited good interface bonding through WAAM. OM images demonstrated a transition zone near the bimetallic interface with a thickness of approximately 1.4 mm. The line scanning results and EPMA mappings revealed the formation of a composition gradient in the transition zone due to element diffusion. From the Mg-Al-Si alloy side to the Mg-Gd-Y-Zn alloy side, the Al and Si contents gradually decreased, while the Gd, Y, and Zn contents gradually increased. Based on the nonequilibrium solidification phase diagram and microstructure analysis, the bimetallic component comprised three regions: the Mg-Al-Si region with the Chinese-script Mg2Si phase; transition region comprising granular Mg2Si, the Mg3(Gd, Y) phase, and the Mg5(Gd, Y) phase; and Mg-Gd-Y-Zn alloy region with the Mg12Zn(Gd, Y) phase as the primary component. After microhardness testing, the hardness of the bimetallic component continuously increased from 57 HV0.5 (Mg-Al-Si alloy side) to 90 HV0.5 (Mg-Gd-Y-Zn alloy side) due to the composition gradient and small second phases in the transition zone. The results of tensile testing at room temperature (20 oC) showed that the strength of the bimetallic component was close to that of the Mg-Al-Si alloy, with an ultimate tensile strength of 236.8 MPa and a yield strength of 102.2 MPa. Meanwhile, the elongation and hardening index of the bimetallic component were close to those of the Mg-Gd-Y-Zn alloy, reaching 11.0% and 0.323, respectively. The fracture position of the WAAM Mg-Al-Si/Mg-Gd-Y-Zn bimetal was located in the transition zone. The fracture mechanism of the Mg-Al-Si alloy was primarily ductile, while those of the bimetal and Mg-Gd-Y-Zn alloy were quasi-cleavage.

Key wordswire arc additive manufacturing    bimetallic component    microstructure    strengthening mechanism
收稿日期: 2023-12-21     
ZTFLH:  TG444  
基金资助:国防基础科研计划项目(JCKY2023602B012)
通讯作者: 郭跃岭,y.guo@bit.edu.cn,主要从事金属增材制造与非平衡凝固研究
Corresponding author: GUO Yueling, professor, Tel: (010)68915097, E-mail: y.guo@bit.edu.cn
作者简介: 韩启飞,男,1997年生,博士生
Alloy wireAlSiGdYZrZnFeCuNiMg
Mg-Al-Si4.164.00-------Bal.
Mg-Gd-Y-Zn--8.803.910.450.850.00090.0010.001Bal.
表1  Mg-Al-Si 和Mg-Gd-Y-Zn合金丝材的化学成分 (mass fraction / %)
图1  Mg-Al-Si/Mg-Gd-Y-Zn双金属薄壁件电弧熔丝增材制造(WAAM)过程示意图
图2  WAAM Mg-Al-Si/Mg-Gd-Y-Zn双金属薄壁件的模型、材料表征和力学性能测试的取样位置及力学性能测试试样尺寸示意图
Alloy

Ip

A

f

Hz

tp

%

Ip / Ib

%

Vs

mm·min-1

Vw

cm·min-1

H

mm

Va

L·min-1

Ua

V

Mg-Al-Si1221.525161501501.32020
Remelting Mg-Al-Si1501.520151500901.32019
Mg-Gd-Y-Zn1221.525161500901.32020
表2  Mg-Al-Si/Mg-Gd-Y-Zn双金属WAAM工艺参数
图3  WAAM Mg-Al-Si/Mg-Gd-Y-Zn双金属的宏观形貌、界面附近的OM像及显微硬度
图4  WAAM Mg-Al-Si/Mg-Gd-Y-Zn双金属过渡区的背散射电子(BSE)像及EPMA结果
图5  Mg-Al-Si和Mg-Gd-Y-Zn合金的非平衡凝固相图
图6  WAAM Mg-Al-Si/Mg-Gd-Y-Zn双金属界面区的BSE和SE像
PointMgAlSiZnYGd
181.4001.4717.13---
278.6214.93--1.554.90
369.66-14.20-5.5710.57
476.72-10.23-4.2708.78
590.73--3.101.9604.21
表3  图6中各点的化学成分 (atomic fraction / %)
图7  3组拉伸试样的室温(20 ℃)真应力-真应变曲线、力学性能统计图及应力-应变双对数拟合曲线
图8  3组拉伸试样断裂后的形貌、断口形貌及断口纵截面显微组织
图9  WAAM Mg-Al-Si/Mg-Gd-Y-Zn双金属过渡区内沉淀相的形成机理示意图
图10  WAAM Mg-Al-Si/Mg-Gd-Y-Zn双金属过渡区的形成机理示意图
图11  Mg-Al-Si和Mg-Gd-Y-Zn合金α-Mg基体中溶质分数与固相分数的关系曲线
1 Fan Z Z, Chen J Z, Lu Z, et al. Research status and development trend of magnesium alloys [J]. Foundry, 2020, 69: 1016
1 樊振中, 陈军洲, 陆 政 等. 镁合金的研究现状与发展趋势 [J]. 铸造, 2020, 69: 1016
2 Liu L M, Zhuang Z L, Liu F, et al. Additive manufacturing of steel-bronze bimetal by shaped metal deposition: Interface characteristics and tensile properties [J]. Int. J. Adv. Manuf. Technol., 2013, 69: 2131
3 Yang H K, Qiu J, Cao C, et al. Theoretical design and experimental study of the interlayer of Al/Mg bimetallic composite plate by solid-liquid cast rolling [J]. Mater. Sci. Eng., 2022, A835: 142677
4 Li G Y, Yang W C, Jiang W M, et al. The role of vacuum degree in the bonding of Al/Mg bimetal prepared by a compound casting process [J]. J. Mater. Process. Technol., 2019, 265: 112
5 Li G Y, Jiang W M, Guan F, et al. Effect of insert materials on microstructure and mechanical properties of Al/Mg bimetal produced by a novel solid-liquid compound process [J]. J. Manuf. Process., 2019, 47: 62
6 Zhao J H, Wen F L, Feng K Q, et al. Interface microstructure regulation of Mg/Ti bimetals by thermal diffusion treatment of Ni-coated TC4 alloy [J]. Intermetallics, 2022, 147: 107594
7 Wen F L, Zhao J H, Yuan M W, et al. Influence of Ni interlayer on interfacial microstructure and mechanical properties of Ti-6Al-4V/AZ91D bimetals fabricated by a solid-liquid compound casting process [J]. J. Magnes. Alloy., 2021, 9: 1382
8 Shangguan J J, Zhao J H, Shi Y, et al. Effects of Zn interlayer on microstructures and mechanical properties of TC4/AZ91D bimetal via solid-liquid compound casting process [J]. Int. J. Metalcast., 2022, 16: 419
doi: 10.1007/s40962-021-00612-9
9 Cheng J, Zhao J H, Zhang J Y, et al. Microstructure and mechanical properties of galvanized-45 steel/AZ91D bimetallic material by liquid-solid compound casting [J]. Materials, 2019, 12: 1651
10 Fan S, Wu H B. Improved interface bonding of Mg/aluminized steel bimetallic castings prepared by solid-liquid compound casting process [J]. Int. J. Cast Met. Res., 2021, 34: 32
11 Li R F, Li T T, Xu J F, et al. A novel amorphous-nanocrystalline interface layer for bonding immiscible Mg/steel by pinless friction stir spot weld with preset nanoscale Fe2Al5 film [J]. Mater. Charact., 2023, 203: 113092
12 Zhao K N, Xu D X, Li H X, et al. Fabrication, microstructure, and properties of interface-reinforced Mg/Mg bimetal composites by long-period stacking ordered structures [J]. J. Alloys Compd., 2020, 816: 152526
13 Zhao K N, Xu D X, Li H X, et al. Microstructure and mechanical properties of Mg/Mg bimetal composites fabricated by hot-pressing diffusion and co-extrusion [J]. Mater. Sci. Eng., 2019, A764: 138194
14 Wang Q H, Song Y, Jiang B, et al. Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion [J]. Mater. Sci. Eng., 2020, A769: 138476
15 Bai L. Basic investigation on microstructure controlling of Mg-Al-Si and Mg-Zn-Al based magnesium alloys [D]. Chongqing: Chongqing University, 2006
15 白 亮. Mg-Al-Si系和Mg-Zn-Al系镁合金组织控制的基础研究 [D]. 重庆: 重庆大学, 2006
16 Li J. Study on fabrication of Mg-Al-Si-RE heat-resistant magnesium alloy and its microstructure and properties [D]. Nanchang: Nanchang University, 2018
16 李 健. Mg-Al-Si-RE耐热镁合金的制备及组织性能研究 [D]. 南昌: 南昌大学, 2018
17 Meng B B, Li Q A, Chen X Y, et al. Microstructure and properties of Mg-9Gd-4Y-1Zn-0.5Zr alloy [J]. Trans. Mater. Heat Treat., 2017, 38(8): 35
17 孟波波, 李全安, 陈晓亚 等. Mg-9Gd-4Y-1Zn-0.5Zr合金的组织和性能 [J]. 材料热处理学报, 2017, 38(8): 35
18 Xiao P, Dong Y X, Gao Y M, et al. Layered magnesium-magnesium-based composite material plate as well as preparation method and application [P]. Chin Pat, 202111471144.1, 2022
18 肖 鹏, 董奕雪, 高义民 等. 一种层状镁-镁基复合材料板材及其制备方法和应用 [P]. 中国专利, 202111471144.1, 2022)
19 Li H X, Zhao K N, Zhang J S, et al. Layered structure magnesium alloy composite material and preparation method [P]. Chin Pat, 201610854689.3, 2018
19 李宏祥, 赵康宁, 张济山 等. 一种层状结构镁合金复合材料及其制备方法 [P]. 中国专利, 201610854689.3, 2018)
20 Hu Q, Jiang Z L, Jiang W M, et al. Interface characteristics of Mg/Al bimetal produced by a novel liquid-liquid compound casting process with an Al interlayer [J]. Int. J. Adv. Manuf. Technol., 2019, 101: 1125
21 Papis K J M, Löffler J F, Uggowitzer P J. Interface formation between liquid and solid Mg alloys—An approach to continuously metallurgic joining of magnesium parts [J]. Mater. Sci. Eng., 2010, A527: 2274
22 Zhai H W, Wang Q H, Jiang B, et al. Designing a mixed texture in Mg/Mg laminated composite via bimetal co-extrusion to ameliorate the mechanical anisotropy [J]. Metals, 2022, 12: 637
23 Tian Y, Hu H J, Zhang D F. A novel severe plastic deformation method for manufacturing Al/Mg bimetallic tube [J]. Int. J. Adv. Manuf. Technol., 2021, 116: 2569
24 Han Q F, Fu R, Hu J L, et al. Research progress in wire arc additive manufacturing of aluminum alloys [J]. J. Mater. Eng., 2022, 50(4): 62
doi: 10.11868/j.issn.1001-4381.2021.000343
24 韩启飞, 符 瑞, 胡锦龙 等. 电弧熔丝增材制造铝合金研究进展 [J]. 材料工程, 2022, 50(4): 62
doi: 10.11868/j.issn.1001-4381.2021.000343
25 Wang D, Deng G W, Yang Y Q, et al. Research progress on additive manufacturing of metallic heterogeneous materials [J]. J. Mech. Eng., 2021, 57(1): 186
doi: 10.3901/JME.2021.01.186
25 王 迪, 邓国威, 杨永强 等. 金属异质材料增材制造研究进展 [J]. 机械工程学报, 2021, 57(1): 186
26 Shi Y H, Li J, Liu K, et al. Research progress and prospect of metallurgical defects in wire arc additive manufacturing of aluminum alloys [J]. Trans. Mater. Heat Treat., 2023, 44(6): 1
26 石寅晖, 李 洁, 刘 坤 等. 铝合金电弧熔丝增材制造的冶金缺陷研究现状与展望 [J]. 材料热处理学报, 2023, 44(6): 1
27 Tian Y B, Shen J Q, Hu S S, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing [J]. Acta Metall. Sin., 2019, 55: 1407
27 田银宝, 申俊琦, 胡绳荪 等. 丝材+电弧增材制造钛/铝异种金属反应层的研究 [J]. 金属学报, 2019, 55: 1407
doi: 10.11900/0412.1961.2019.00022
28 Fang X W, Yang J N, Chen R K, et al. Research progress of wire arc additive manufacturing technology for aluminum alloy [J]. Elect. Weld. Machi., 2023, 53(2): 52
28 方学伟, 杨健楠, 陈瑞凯 等. 铝合金电弧增材制造技术研究进展 [J]. 电焊机, 2023, 53(2): 52
29 Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
29 唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
30 Ghanavati R, Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies [J]. J. Mater. Res. Technol., 2021, 13: 1628
doi: 10.1016/j.jmrt.2021.05.022
31 Ahsan R U, Tanvir A N M, Ross T, et al. Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire + arc additive manufacturing [J]. Rapid Prototyping J., 2020, 26: 519
32 Xia Y F, Zhang X, Liao H L, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing [J]. Trans. China Weld. Inst., 2021, 42(8): 18
32 夏玉峰, 张 雪, 廖海龙 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能 [J]. 焊接学报, 2021, 42(8): 18
doi: 10.12073/j.hjxb.20210422001
33 Wu B T, Qiu Z J, Pan Z X, et al. Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy [J]. J. Mater. Sci. Technol., 2020, 52: 226
doi: 10.1016/j.jmst.2020.04.019
34 Guo Y F. Experimental research on multilayer structure of high nitrogen steel-316L made by robot CMT additive manufacturing [D]. Nanjing: Nanjing University of Science & Technology, 2017
34 郭一飞. 机器人CMT增材制造高氮钢-316L多层结构试验研究 [D]. 南京: 南京理工大学, 2017
35 Zhang B C, Wang Y X, Qu X H. Key issues of integrated forming of dissimilar metals based on additive manufacturing [J]. Aeron. Manuf. Technol., 2023, 66: 36
35 张百成, 王泳翔, 曲选辉. 基于增材制造的异种金属一体化成形关键问题 [J]. 航空制造技术, 2023, 66: 36
36 Guo Y L, Han Q F, Lu W J, et al. Microstructure tuning enables synergistic improvements in strength and ductility of wire-arc additive manufactured commercial Al-Zn-Mg-Cu alloys [J]. Virtual Phys. Prototyp., 2022, 17: 649
37 Qiu H F, Hou X H, Guo X H, et al. Progress in shape control of thin-walled parts for wire and arc additive manufacturing [J]. Mater. Rev., 2024, 38: 197
37 邱贺方, 侯笑晗, 郭晓辉 等. 电弧增材制造薄壁件“控形”研究进展 [J]. 材料导报, 2024, 38: 197
38 Derekar K, Lawrence J, Melton G, et al. Influence of interpass temperature on wire arc additive manufacturing (WAAM) of aluminium alloy components [J]. MATEC Web Conf., 2019, 269: 05001
39 Wang T D, Zhou Y, Wang P Y, et al. Effect of Gd on microstructure and corrosion resistance of Mg-Gd-Y-Zr alloys [J]. Dev. Appl. Mater., 2020, 35(6): 30
39 王腾达, 周 洋, 王鹏云 等. Gd含量对Mg-Gd-Y-Zr镁合金的组织及耐蚀性能的影响 [J]. 材料开发与应用, 2020, 35(6): 30
40 Zhang X D, Suo Z X, Wei B X, et al. Effect of RE element Y on microstructure and mechanical properties of as-cast magnesium alloy [J]. Heat Treat. Met., 2020, 45(10): 171
40 张旭东, 索转霞, 魏博鑫 等. 稀土Y元素对铸态镁合金组织与力学性能的影响 [J]. 金属热处理, 2020, 45(10): 171
41 Hu B, Zhu W J, Li Z X, et al. Effects of Ce content on the modification of Mg2Si phase in Mg-5Al-2Si alloy [J]. J. Magnes. Alloy., 2023, 11: 2299
42 Meng Y P, Lin B Y, Wang L F, et al. Effect of extrusion combination types on microstructure and mechanical properties of the AZ31/GW103K bimetallic composite plates [J]. Acta Metall. Sin. (Eng. Lett.), 2022, 35: 1959
43 Meng B B, Li Q A, Zhang X Y, et al. Effects of Zn content on microstructure and mechanical properties of Mg-9Gd-4Y-xZn-0.5Zr alloys [J]. Trans. Mater. Heat Treat., 2018, 39(1): 8
43 孟波波, 李全安, 张兴渊 等. Zn含量对Mg-9Gd-4Y-xZn-0.5Zr合金组织和力学性能的影响 [J]. 材料热处理学报, 2018, 39(1): 8
doi: 10.13289/j.issn.1009-6264.2017-0395
44 Zhang Y S, Shao D D, Ding D H, et al. Effect of active interpass cooling on temperature and thermal stress evolution of wire arc additively manufactured Ti6Al4V alloy [J]. Elect. Weld. Machi., 2023, 53(2): 111
44 张云舒, 邵丹丹, 丁东红 等. 层间强制冷却对电弧熔丝增材制造钛合金温度场和应力场的影响 [J]. 电焊机, 2023, 53(2): 111
45 Jiang S X, Li F G. Effect of interpass temperature on forming quality of H13 steel by wire and arc additive manufacture [J]. J. Netshape Form. Eng., 2022, 14(6): 111
45 姜淑馨, 李峰光. 层间温度对H13钢丝材电弧增材制造成形质量的影响 [J]. 精密成形工程, 2022, 14(6): 111
46 Xiong J, Lei Y Y, Li R. Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures [J]. Appl. Therm. Eng., 2017, 126: 43
47 Zhao K N, Xu D X, Song X, et al. Reducing yield asymmetry between tension and compression by fabricating ZK60/WE43 bimetal composites [J]. Materials, 2020, 13: 249
48 Zhang W, Hu H J, Hu G, et al. A direct extrusion‐shear deformation composite process that significantly improved the metallurgical bonding and texture regulation grain refinement and mechanical properties of hot-extruded AZ31/AA6063 composite tubes [J]. Mater. Sci. Eng., 2023, A880: 145090
49 Xiao L, Wang N. Growth behavior of intermetallic compounds during reactive diffusion between aluminum alloy 1060 and magnesium at 573-673 K [J]. J. Nucl. Mater., 2015, 456: 389
50 Meng Y P, Zhang H, Lin B Y, et al. Microstructure and mechanical properties of the AZ31/GW103K bimetal composite rods fabricated by co-extrusion [J]. Mater. Sci. Eng., 2022, A833: 142578
51 Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite [J]. Acta Mater., 2005, 53: 2127
52 He K, Zhao J H, Cheng J, et al. Effect of pouring temperature during a novel solid-liquid compound casting process on microstructure and mechanical properties of AZ91D magnesium alloy parts with arc-sprayed aluminum coatings [J]. J. Mater. Sci., 2020, 55: 6678
53 Cekmer O, LaManna J M, Mench M M. Alternative analytical analysis for improved Loschmidt diffusion cell [J]. Int. J. Heat Mass Transf., 2013, 65: 883
54 Zhang W, Hu H J, Gan S, et al. Microstructural characterization and mechanical behavior of Mg-AZ31B/Al 6063 bimetallic sheets produced by combining continuous shear deformation with direct extrusion [J]. Mater. Today Commun., 2023, 37: 107164
55 Okugawa M, Izumikawa D, Koizumi Y. Simulations of non-equilibrium and equilibrium segregation in nickel-based superalloy using modified Scheil-Gulliver and phase-field methods [J]. Mater. Trans., 2020, 61: 2072
56 Zhang Z, Jiang W M, Guan F, et al. Interface formation and strengthening mechanisms of Al/Mg bimetallic composite via compound casting with rare earth Ce introduction [J]. Mater. Sci. Eng., 2022, A854: 143830
57 Zhang Z, Jiang W M, Guan F, et al. Understanding the microstructural evolution and strengthening mechanism of Al/Mg bimetallic interface via the introduction of Y [J]. Mater. Sci. Eng., 2022, A840: 142974
58 Tang J W, Chen L, Zhao G Q, et al. Achieving three-layered Al/Mg/Al sheet via combining porthole die co-extrusion and hot forging [J]. J. Magnes. Alloy., 2020, 8: 654
59 Tang L L, Zhao Y H, Islamgaliev R K, et al. Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP [J]. Mater. Sci. Eng., 2016, A670: 280
[1] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[2] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[3] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[4] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[5] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[6] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[7] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[8] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[9] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[10] 王志军, 白晓昱, 王健斌, 姜慧, 焦文娜, 李天昕, 卢一平. 共晶高熵合金十年发展回顾(20142024):设计、制备与应用[J]. 金属学报, 2025, 61(1): 1-11.
[11] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[12] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[13] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[14] 张瑶, 齐敏, 孙佳, 吴婷, 马英杰, 王皞, 杨锐. 3D相场模拟研究Ti-6Al-4V合金片层组织形貌的影响因素[J]. 金属学报, 2024, 60(9): 1265-1278.
[15] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.