Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 109-116    DOI: 10.11900/0412.1961.2024.00255
  研究论文 本期目录 | 过刊浏览 |
Au-Pt合金凝固-固态相变微观组织演化相场法模拟
余东1, 马威龙2, 王亚莉1, 王锦程1()
1 西北工业大学 凝固技术国家重点实验室 西安 710072
2 西安理工大学 材料科学与工程学院 西安 710048
Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys
YU Dong1, MA Weilong2, WANG Yali1, WANG Jincheng1()
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 College of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
Dong YU, Weilong MA, Yali WANG, Jincheng WANG. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. Acta Metall Sin, 2025, 61(1): 109-116.

全文: PDF(2265 KB)   HTML
摘要: 

凝固/固态相变过程中的微观组织演化对材料的组织控制及性能优化具有重要意义,如何实现凝固-固态相变微观组织演化的全流程一体化数值模拟是当前材料微观组织模拟领域的前沿课题。本工作以Au-Pt合金为例,基于多相场模型和微观组织信息传递算法,研究了不同初始成分条件下凝固和固态相变过程微观组织的演化规律。实现了凝固-固态相变微观组织演化全流程一体化预测,揭示了凝固过程中微观偏析和晶界对后续脱溶析出和调幅分解过程的影响机制。

关键词 凝固固态相变微观组织演化相场法一体化数值模拟    
Abstract

The evolution of the microstructure during solidification and solid-state phase transformation is crucial for controlling the material microstructure and optimizing performance. Achieving an integrated numerical simulation of the microstructural evolution from solidification to solid-state phase transformation is a cutting-edge challenge in material-microstructure simulation. This study focuses on Au-Pt alloys, utilizing a multiphase field model combined with a microstructural information transfer algorithm to simulate and predict microstructural evolution during the solidification and solid-state phase transformation under different initial composition conditions. The study successfully realizes an integrated simulation prediction of the microstructural evolution across both processes, revealing the influence of microsegregation and grain boundaries during solidification on subsequent processes of decomposition and spinodal decomposition.

Key wordssolidification    solid-state phase transformation    microstructure evolution    phase field method    integrated modeling
收稿日期: 2024-08-14     
ZTFLH:  TG111.4  
基金资助:国家重点研发计划项目(2021YFC2202301)
通讯作者: 王锦程,jchwang@nwpu.edu.cn,主要从事微观组织数值模拟、合金设计及增材制造等方面的研究
Corresponding author: WANG Jincheng, professor, Tel: (029)88460650, E-mail: jchwang@nwpu.edu.cn
作者简介: 余 东,男,1999年生,硕士生
图1  不同尺度间插值的示意图
图2  溶质场插值过程示意图
图3  Au-Pt二元合金相图
ParameterVariableUnitValue
Liquid phase solute diffusivityDLm2·s-13.5 × 10-9 [23]
Solid phase solute diffusivityDSm2·s-10.5 × 10-12[23]
Solid-liquid interface energyσSLJ·m-20.5
Solid-solid interface energyσSSJ·m-21
Mole volumeVmm3·mol-19.8 × 10-6
Thickness of solid-liquid interfaceλLSμm5dx
Thickness of solid-solid interfaceλSSμm5dx
Anisotropy coefficient of interface energyγ4-0.02
Mean radius of initial nucleusrμm10dx
表1  Au-Pt合金的热物性参数及模拟参数
图4  不同初始成分条件下Au-Pt合金多晶组织的成分场演化及凝固末期的晶粒取向分布情况
图5  xPt = 0.3时图4c1中红框所示区域凝固组织的后续脱溶析出及调幅分解组织演化情况
图6  xPt = 0.6时图4c2中红框所示区域凝固组织的后续固态相变组织演化情况
1 Kurz W, Fisher D J, Trivedi R. Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000[J]. Int. Mater. Rev., 2019, 64: 311
2 Kurz W, Rappaz M, Trivedi R. Progress in modelling solidification microstructures in metals and alloys. Part II: Dendrites from 2001 to 2018[J]. Int. Mater. Rev., 2021, 66: 30
3 Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials[J]. Chin. J. Nonferrous Met., 2019, 29: 1953
3 翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望[J]. 中国有色金属学报, 2019, 29: 1953
4 Liu F, Zhang X, Zhang Y B. Unified analysis of non-equilibrium solidification and solid-state phase transformations[J]. Acta Metall. Sin., 2018, 54: 701
doi: 10.11900/0412.1961.2018.00112
4 刘 峰, 张 旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54: 701
5 Ghosh S, Zollinger J, Zaloznik M, et al. Modeling of hierarchical solidification microstructures in metal additive manufacturing: challenges and opportunities[J]. Addit. Manuf., 2023, 78: 103845
6 Wang T M, Wei J J, Wang X D, et al. Progress and application of microstructure simulation of alloy solidification[J]. Acta Metall. Sin., 2018, 54: 193
doi: 10.11900/0412.1961.2017.00428
6 王同敏, 魏晶晶, 王旭东 等. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54: 193
doi: 10.11900/0412.1961.2017.00428
7 Wang J C, Guo C W, Li J J, et al. Recent progresses in competitive grain growth during directional solidification[J]. Acta Metall. Sin., 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
7 王锦程, 郭春文, 李俊杰 等. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
8 Liu B C, Xu Q Y, Jing T, et al. Advances in multi-scale modeling of solidification and casting processes[J]. JOM, 2011, 63(4): 19
9 Warnken N, Larsson H, Reed R C. Coupled modelling of solidification and solution heat treatment of advanced single crystal nickel base superalloy[J]. Mater. Sci. Technol., 2009, 25: 179
10 Meng X N, Gao X H, Huang S, et al. Cross-scale modeling of MnS precipitation for steel solidification[J]. Metals, 2018, 8: 529
11 Shi R P, Khairallah S, Heo T W, et al. Integrated simulation framework for additively manufactured Ti-6Al-4V: Melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response[J]. JOM, 2019, 71: 3640
12 Liu P W, Wang Z, Xiao Y H, et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials[J]. Int. J. Plast., 2020, 128: 102670
13 Zhang Q, Wang J C, Zhang Y C, et al. Simulation of multi-grain solidification and subsequent spinodal decomposition by using phase field crystal model[J]. Acta Phys. Sin., 2011, 60: 088104
13 张 琪, 王锦程, 张亚丛 等. 多晶凝固及后续调幅分解过程的晶体相场法模拟[J]. 物理学报, 2011, 60: 088104
14 Kodama T, Nakai R, Goto K, et al. Preparation of an Au-Pt alloy free from artifacts in magnetic resonance imaging[J]. Magn. Reson. Imaging, 2017, 44: 38
doi: S0730-725X(17)30124-8 pmid: 28700894
15 Silvestri Z, Davis R S, Genevès G, et al. Volume magnetic susceptibility of gold-platinum alloys: Possible materials to make mass standards for the watt balance experiment[J]. Metrologia, 2003, 40: 172
16 Liu M W, Weissmüller J. Phase decomposition in nanoporous Au-Pt[J]. Acta Mater., 2022, 241: 118419
17 Celik F A, Özel S. A simulation study on the orientational phase transformation behavior of Au-Pt alloy for different concentration of Pt[J]. Solid State Commun., 2020, 316-317: 113940
18 Vidano S, Novara C, Pagone M, et al. The LISA DFACS: Model Predictive Control design for the test mass release phase[J]. Acta Astron., 2022, 193: 731
19 Kim S G. A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties[J]. Acta Mater., 2007, 55: 4391
20 Steinbach I, Pezzolla F. A generalized field method for multiphase transformations using interface fields[J]. Physica, 1999, 134D: 385
21 Xu X N, Qin G W, Ren Y P, et al. Experimental study of the miscibility gap and calculation of the spinodal curves of the Au-Pt system[J]. Scr. Mater., 2009, 61: 859
22 Grolier V, Schmid-Fetzer R. Experimental study of Au-Pt-Sn phase equilibria and thermodynamic assessment of the Au-Pt and Au-Pt-Sn systems[J]. J. Electron. Mater., 2008, 37: 264
23 Liu Y J, Wang J, Du Y, et al. Phase boundary migration, Kirkendall marker shift and atomic mobilities in fcc Au-Pt alloys[J]. Calphad, 2012, 36: 94
24 Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345
25 Ye W C, Kou H H, Liu Q Z, et al. Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation[J]. Int. J. Hydrogen Energy, 2012, 37: 4088
26 Ramanarayan H, Abinandanan T A. Spinodal decomposition in polycrystalline alloys[J]. Physica, 2003, 318A: 213
27 Li L L, Li Z M, da Silva A K, et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy[J]. Acta Mater., 2019, 178: 1
28 Guo C, Zhao Y P, Deng Y Y, et al. A phase-field study on interaction process of moving grain boundary and spinodal decomposition[J]. Acta Phys. Sin., 2022, 71: 078101
28 郭 灿, 赵玉平, 邓英远 等. 运动晶界与调幅分解相互作用过程的相场法研究[J]. 物理学报, 2022, 71: 078101
[1] 卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
[2] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[3] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[4] 杨林, 马长松, 刘连杰, 李金富. 过冷(Fe1 -x Co x)79.3B20.7 合金的凝固[J]. 金属学报, 2025, 61(1): 99-108.
[5] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[6] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[7] 刘彩艳, 冯泽华, 张云鹏, 余康, 吴璐, 马聪, 张静. Fe-Cr合金气泡演化动力学的相场法模拟[J]. 金属学报, 2024, 60(9): 1279-1288.
[8] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[9] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[10] 朱绍祥, 王清江, 刘建荣, 陈志勇. TC19合金铸锭中ZrMo元素的宏观偏析行为[J]. 金属学报, 2024, 60(7): 869-880.
[11] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[12] 申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
[13] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[14] 朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
[15] 郭杰, 黄立清, 吴京洋, 李俊杰, 王锦程, 樊凯. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 60(11): 1531-1544.