Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1239-1249    DOI: 10.11900/0412.1961.2023.00089
  研究论文 本期目录 | 过刊浏览 |
Cu-Co系难混溶合金核壳结构演化过程模拟
王霖1, 魏晨1, 王雷2, 王军1(), 李金山1
1.西北工业大学 凝固技术国家重点实验室 西安 710072
2.西安理工大学 材料科学与工程学院 西安 710048
Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys
WANG Lin1, WEI Chen1, WANG Lei2, WANG Jun1(), LI Jinshan1
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2.School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
Lin WANG, Chen WEI, Lei WANG, Jun WANG, Jinshan LI. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. Acta Metall Sin, 2024, 60(9): 1239-1249.

全文: PDF(2573 KB)   HTML
摘要: 

Cu-Co合金具有良好的导电性和巨磁阻性能,在工业上具有很大的应用潜力。由于Cu-Co合金在制备过程中易发生液相分离,导致严重的组分偏析,限制了该合金的应用。因此,探明其凝固组织的演化机制对组织调控工作有着重要意义。本工作主要研究了Cu-Co合金凝固过程中核壳结构的形成机制,并结合实验和数值模拟等方法分析了合金组织的演变过程。模拟基于相场法,并通过耦合流体流动和Marangoni运动,分别进行了3个并行条件的模拟,系统分析了不同条件下该合金不同阶段的微观组织演化过程。模拟结果表明,液相分离引起的流体流动会加速第二相的粗化,同时温度梯度引起的Marangoni运动驱使第二相液滴向中心(高温)聚集,并进一步加速其粗化进程。此外,以3种不同成分Cu-Co合金为例进行模拟,研究了富Co相的体积分数对组织演变产生的影响;并通过与实验制备的凝固组织进行对比,验证了模拟结果的可靠性。

关键词 液相分离凝固数值模拟组织演化    
Abstract

Cu-Co alloys demonstrate immense potential for industrial applications due to their excellent properties, including high electrical conductivity and giant magnetoresistance effect. As typical immiscible alloys, Cu-Co alloys are prone to liquid-phase separation during their preparation; as a result, their components undergo severe segregation, limiting their applicability. Thus, investigating and elucidating the evolution mechanism of solidification structures of the Cu-Co alloys is imperative. However, liquid-phase separation in these alloys occurs on miniscule time and space scales, and complex physical processes such as diffusion, convection, and heat transfer are also involved. Hence, investigating the kinetic characteristics of alloy solidification and the mechanisms of microstructure formation solely by experimental methods using the existing technology is challenging. Nevertheless, with the continuous advancement of theoretical foundations and computational capabilities of materials, numerical simulations have emerged as an effective tool for investigating the microstructure evolution of immiscible alloys. This study investigates the mechanisms involved in the formation of core-shell structures during the solidification of Cu-Co alloys using a combination of experimental and numerical simulation techniques. Based on the phase-field method, three parallel simulations, incorporating fluid flow and Marangoni motion, were conducted. The microstructure evolution at various stages and under different conditions was systematically analyzed. The simulation results indicated that the fluid flow resulting from liquid-phase separation could expedite the coarsening of the second-phase droplets. Furthermore, Marangoni motion driven by temperature gradients resulted in the coalescence of second-phase droplets at the center (high temperatures), accelerating the coarsening process. The Ostwald ripening phenomenon and coagulation process between the second-phase droplets were simulated, and the growth kinetic mechanisms of the second phase were revealed. In addition, three Cu-Co alloys were used for simulations to investigate the impact of the volume fraction of Co-rich phase on the microstructure evolution. The validity of the simulation results was confirmed by comparing the simulated solidification structures with those obtained experimentally.

Key wordsliquid phase separation    solidification    numerical simulation    microstructure evolution
收稿日期: 2023-03-03     
ZTFLH:  TG146  
基金资助:国家自然科学基金面上项目(52174375);陕西省创新能力支撑计划项目(2020KJXX-073);凝固技术国家重点实验室自主课题项目(2023-TS-13)
通讯作者: 王 军,nwpuwj@nwpu.edu.cn,主要从事金属材料及其凝固行为的研究
Corresponding author: WANG Jun, professor, Tel: (029)88460568, E-mail: nwpuwj@nwpu.edu.cn
作者简介: 王 霖,男,1999年生,硕士
图1  3种合金在Cu-Co系二元相图中的位置
图2  模拟的Cu65Co35合金液相分离形成的核壳微观结构
图3  Ostwald熟化过程——显示了不同时刻第二相液滴的演化过程
图4  第二相的凝并过程——显示了凝并过程中不同时刻下液桥的形成与演化
图5  Cu35Co65合金液相分离演变过程的微观组织
图6  Cu35Co65合金液相分离过程中不同时刻Co浓度与径向距离的关系
图7  Cu50Co50合金液相分离演变过程的模拟微观组织
图8  Cu50Co50合金液相分离过程中不同时刻Co浓度与径向距离的关系
图9  Cu65Co35合金液相分离演变过程的模拟微观组织
图10  Cu65Co35合金液相分离过程中不同时刻Co浓度与径向距离的关系
图11  Cu50Co50合金的非平衡凝固组织[26]与Cu50Co50合金液相分离的模拟组织对比
1 Wei C, Wang J, He Y X, et al. Liquid-liquid phase separation in immiscible Cu-Co alloy [J]. Mater. Lett., 2020, 268: 127585
2 Sun Z B, Song X P, Hu Z D, et al. Liquid separating behavior of Cu-Co alloys under deep supercooling [J]. Chin. J. Nonferrous Met., 2001, 11: 68
2 孙占波, 宋晓平, 胡柱东 等. 深过冷条件下Cu-Co合金的液相分解 [J]. 中国有色金属学报, 2001, 11: 68
3 Hu Y, Cao W M, Yin R H, et al. Study of giant magnetoresistence of Co/Cu multilayers prepared by electrochemical deposition [J]. J. Funct. Mater., 2005, 36: 187
3 胡 滢, 曹为民, 印仁和 等. Co/Cu纳米多层膜的制备及巨磁阻性能的研究 [J]. 功能材料, 2005, 36: 187
4 Yan Y J, Wei C, He Y X, et al. Effect of high magnetic field on solidification microstructure evolution of a Cu-Fe immiscible alloy [J]. China Foundry, 2022, 19: 335
5 Wei C, Li J S, Yan Y J, et al. Effect of high magnetic field on the microstructure evolution behavior of undercooled Cu-Co alloy [J]. Foundry Technol., 2022, 43: 180
5 魏 晨, 李金山, 闫育洁 等. 强磁场对过冷Cu-Co合金组织演化行为的影响 [J]. 铸造技术, 2022, 43: 180
6 Jiang H X, Sun X J, Li S X, et al. Continuous solidification of Al-Bi immiscible alloys under the direct current [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1045
6 江鸿翔, 孙小钧, 李世欣 等. 直流电流作用下Al-Bi偏晶合金连续凝固研究 [J]. 特种铸造及有色合金, 2020, 40: 1045
doi: 10.15980/j.tzzz.2020.10.001
7 Kolbe M, Cao C D, Lu X Y, et al. Solidification behaviour of undercooled Co-Cu alloys showing a metastable miscibility gap [J]. Mater. Sci. Eng., 2004, A375-377: 520
8 Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
9 Liu S C, Jie J C, Guo Z K, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions [J]. J. Alloys Compd., 2018, 742: 99
10 Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
11 Anders D, Weinberg K. Numerical simulation of diffusion induced phase separation and coarsening in binary alloys [J]. Comput. Mater. Sci., 2011, 50: 1359
12 Bhattacharyya S, Abinandanan T A. A study of phase separation in ternary alloys [J]. Bull. Mater. Sci., 2003, 26: 193
13 Braga M H, Oliveira J C R E, Malheiros L F, et al. Phase field simulations in miscibility gaps [J]. Calphad, 2009, 33: 237
14 Hedström P, Baghsheikhi S, Liu P, et al. A phase-field and electron microscopy study of phase separation in Fe-Cr alloys [J]. Mater. Sci. Eng., 2012, A534: 552
15 Kuwajima T, Saito Y, Suwa Y. Kinetics of phase separation in iron-based ternary alloys. II. Numerical simulation of phase separation in Fe-Cr-X (X = Mo, Cu) ternary alloys [J]. Intermetallics, 2003, 11: 1279
16 Guo C, Zhao Y P, Deng Y Y, et al. A phase-field study on interaction process of moving grain boundary and spinodal decomposition [J]. Acta Phys. Sin., 2022, 71(7): 078101
16 郭 灿, 赵玉平, 邓英远 等. 运动晶界与调幅分解相互作用过程的相场法研究 [J]. 物理学报, 2022, 71(7): 078101
17 Guo C, Zhang Y C, Gao Y, et al. Atomic scale investigation of nucleation process by the phase field crystal model [J]. Foundry Technol., 2022, 43: 103
17 郭 灿, 张一弛, 高 莹 等. 原子尺度形核过程的晶体相场法研究 [J]. 铸造技术, 2022, 43: 103
18 Qin T, Wang H P, Wei B B. Simulated evolution process of core-shell microstructures [J]. Sci. China, 2007, 50G: 546
19 Shi R P, Wang Y, Wang C P, et al. Self-organization of core-shell and core-shell-corona structures in small liquid droplets [J]. Appl. Phys. Lett., 2011, 98: 204106
20 Wang W L, Wu Y H, Li L H, et al. Homogeneous granular microstructures developed by phase separation and rapid solidification of liquid Fe-Sn immiscible alloy [J]. J. Alloys Compd., 2017, 693: 650
21 Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
22 Sun M M, Tian C Y, Mao L Y, et al. Reconfigurable magnetic slime robot: Deformation, adaptability, and multifunction [J]. Adv. Funct. Mater., 2022, 32: 2112508
23 Li X, Qiao Z H, Zhang H. A second-order convex splitting scheme for a Cahn-Hilliard equation with variable interfacial parameters [J]. J. Comput. Math., 2017, 35: 693
doi: 10.4208/jcm.1611-m2016-0517
24 Maurits N M, Zvelindovsky A V, Sevink G J A, et al. Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach [J]. J. Chem. Phys., 1998, 108: 9150
25 Mauri R, Shinnar R, Triantafyllou G. Spinodal decomposition in binary mixtures [J]. Phys. Rev., 1996, 53E: 2613
26 Li J S, Wei C, Wang J, et al. A method for obtaining core-shell structure of immiscible alloy [P]. Chin Pat, 202310044747.6, 2023
26 李金山, 魏 晨, 王 军 等. 一种难混溶合金获得核壳结构的方法 [P]. 中国专利, 202310044747.6, 2023)
[1] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[2] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[3] 朱绍祥, 王清江, 刘建荣, 陈志勇. TC19合金铸锭中ZrMo元素的宏观偏析行为[J]. 金属学报, 2024, 60(7): 869-880.
[4] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[5] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[6] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[7] 朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
[8] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[9] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[13] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[14] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[15] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.