|
|
Cu-Co系难混溶合金核壳结构演化过程模拟 |
王霖1, 魏晨1, 王雷2, 王军1( ), 李金山1 |
1.西北工业大学 凝固技术国家重点实验室 西安 710072 2.西安理工大学 材料科学与工程学院 西安 710048 |
|
Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys |
WANG Lin1, WEI Chen1, WANG Lei2, WANG Jun1( ), LI Jinshan1 |
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2.School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
引用本文:
王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
Lin WANG,
Chen WEI,
Lei WANG,
Jun WANG,
Jinshan LI.
Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. Acta Metall Sin, 2024, 60(9): 1239-1249.
1 |
Wei C, Wang J, He Y X, et al. Liquid-liquid phase separation in immiscible Cu-Co alloy [J]. Mater. Lett., 2020, 268: 127585
|
2 |
Sun Z B, Song X P, Hu Z D, et al. Liquid separating behavior of Cu-Co alloys under deep supercooling [J]. Chin. J. Nonferrous Met., 2001, 11: 68
|
2 |
孙占波, 宋晓平, 胡柱东 等. 深过冷条件下Cu-Co合金的液相分解 [J]. 中国有色金属学报, 2001, 11: 68
|
3 |
Hu Y, Cao W M, Yin R H, et al. Study of giant magnetoresistence of Co/Cu multilayers prepared by electrochemical deposition [J]. J. Funct. Mater., 2005, 36: 187
|
3 |
胡 滢, 曹为民, 印仁和 等. Co/Cu纳米多层膜的制备及巨磁阻性能的研究 [J]. 功能材料, 2005, 36: 187
|
4 |
Yan Y J, Wei C, He Y X, et al. Effect of high magnetic field on solidification microstructure evolution of a Cu-Fe immiscible alloy [J]. China Foundry, 2022, 19: 335
|
5 |
Wei C, Li J S, Yan Y J, et al. Effect of high magnetic field on the microstructure evolution behavior of undercooled Cu-Co alloy [J]. Foundry Technol., 2022, 43: 180
|
5 |
魏 晨, 李金山, 闫育洁 等. 强磁场对过冷Cu-Co合金组织演化行为的影响 [J]. 铸造技术, 2022, 43: 180
|
6 |
Jiang H X, Sun X J, Li S X, et al. Continuous solidification of Al-Bi immiscible alloys under the direct current [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1045
|
6 |
江鸿翔, 孙小钧, 李世欣 等. 直流电流作用下Al-Bi偏晶合金连续凝固研究 [J]. 特种铸造及有色合金, 2020, 40: 1045
doi: 10.15980/j.tzzz.2020.10.001
|
7 |
Kolbe M, Cao C D, Lu X Y, et al. Solidification behaviour of undercooled Co-Cu alloys showing a metastable miscibility gap [J]. Mater. Sci. Eng., 2004, A375-377: 520
|
8 |
Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
|
9 |
Liu S C, Jie J C, Guo Z K, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions [J]. J. Alloys Compd., 2018, 742: 99
|
10 |
Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
|
11 |
Anders D, Weinberg K. Numerical simulation of diffusion induced phase separation and coarsening in binary alloys [J]. Comput. Mater. Sci., 2011, 50: 1359
|
12 |
Bhattacharyya S, Abinandanan T A. A study of phase separation in ternary alloys [J]. Bull. Mater. Sci., 2003, 26: 193
|
13 |
Braga M H, Oliveira J C R E, Malheiros L F, et al. Phase field simulations in miscibility gaps [J]. Calphad, 2009, 33: 237
|
14 |
Hedström P, Baghsheikhi S, Liu P, et al. A phase-field and electron microscopy study of phase separation in Fe-Cr alloys [J]. Mater. Sci. Eng., 2012, A534: 552
|
15 |
Kuwajima T, Saito Y, Suwa Y. Kinetics of phase separation in iron-based ternary alloys. II. Numerical simulation of phase separation in Fe-Cr-X (X = Mo, Cu) ternary alloys [J]. Intermetallics, 2003, 11: 1279
|
16 |
Guo C, Zhao Y P, Deng Y Y, et al. A phase-field study on interaction process of moving grain boundary and spinodal decomposition [J]. Acta Phys. Sin., 2022, 71(7): 078101
|
16 |
郭 灿, 赵玉平, 邓英远 等. 运动晶界与调幅分解相互作用过程的相场法研究 [J]. 物理学报, 2022, 71(7): 078101
|
17 |
Guo C, Zhang Y C, Gao Y, et al. Atomic scale investigation of nucleation process by the phase field crystal model [J]. Foundry Technol., 2022, 43: 103
|
17 |
郭 灿, 张一弛, 高 莹 等. 原子尺度形核过程的晶体相场法研究 [J]. 铸造技术, 2022, 43: 103
|
18 |
Qin T, Wang H P, Wei B B. Simulated evolution process of core-shell microstructures [J]. Sci. China, 2007, 50G: 546
|
19 |
Shi R P, Wang Y, Wang C P, et al. Self-organization of core-shell and core-shell-corona structures in small liquid droplets [J]. Appl. Phys. Lett., 2011, 98: 204106
|
20 |
Wang W L, Wu Y H, Li L H, et al. Homogeneous granular microstructures developed by phase separation and rapid solidification of liquid Fe-Sn immiscible alloy [J]. J. Alloys Compd., 2017, 693: 650
|
21 |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
|
22 |
Sun M M, Tian C Y, Mao L Y, et al. Reconfigurable magnetic slime robot: Deformation, adaptability, and multifunction [J]. Adv. Funct. Mater., 2022, 32: 2112508
|
23 |
Li X, Qiao Z H, Zhang H. A second-order convex splitting scheme for a Cahn-Hilliard equation with variable interfacial parameters [J]. J. Comput. Math., 2017, 35: 693
doi: 10.4208/jcm.1611-m2016-0517
|
24 |
Maurits N M, Zvelindovsky A V, Sevink G J A, et al. Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach [J]. J. Chem. Phys., 1998, 108: 9150
|
25 |
Mauri R, Shinnar R, Triantafyllou G. Spinodal decomposition in binary mixtures [J]. Phys. Rev., 1996, 53E: 2613
|
26 |
Li J S, Wei C, Wang J, et al. A method for obtaining core-shell structure of immiscible alloy [P]. Chin Pat, 202310044747.6, 2023
|
26 |
李金山, 魏 晨, 王 军 等. 一种难混溶合金获得核壳结构的方法 [P]. 中国专利, 202310044747.6, 2023)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|