Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 203-210    DOI: 10.11900/0412.1961.2024.00412
  ★名家经典★ 本期目录 | 过刊浏览 |
金属链创制
李殿中(), 胡小强, 王培
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Metal Chain Creation
LI Dianzhong(), HU Xiaoqiang, WANG Pei
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李殿中, 胡小强, 王培. 金属链创制[J]. 金属学报, 2025, 61(2): 203-210.
Dianzhong LI, Xiaoqiang HU, Pei WANG. Metal Chain Creation[J]. Acta Metall Sin, 2025, 61(2): 203-210.

全文: PDF(16272 KB)   HTML
摘要: 

金属零部件的制造过程涉及合金设计、原材料制备、冶炼、铸坯、锻轧、热处理、精密冷加工等,研究工作理应贯穿金属制造与服役的全生命周期。只有贯通全生命周期技术链,金属的性能才能充分发挥。以往的工艺技术研究多注重“点”的突破,而在金属材料与零部件的加工中间经常出现“断链”现象,导致高端零部件的性能不合格、不稳定、不可靠,甚至大量依赖进口。为解决上述问题,本文以直径8 m级盾构机主轴承研制为例,从套圈用轴承钢的V、B、稀土共合金化设计出发,基于高纯净、高均质轴承钢的制造和高性能轴承零部件精密加工,阐述了轴承制造全流程的关键技术及其关联性,重点介绍了连接轴承材料到轴承零部件的热处理技术和大型滚子的精密加工技术。在此基础上,成功制造了性能优异的大型盾构机主轴承,具备进口替代能力。基于此,本文提出了金属链创制的学术思想,即从材料设计的源头出发,对合金设计、原材料制备、冶炼、铸坯、锻轧、热处理、精密冷加工、装配制造、检测评价、应用考核等全链条进行研发,通过从全链条角度识别各工序的关键数据,并对其进行调控和传递,迭代优化,贯通技术链,打造创新链,对接产业链,实现金属材料与高端零部件的可控制造。

关键词 金属链合金设计热加工冷加工创制    
Abstract

The manufacture of metallic components involves alloy design, raw material preparation, melting, ingot/slab casting, hot forging or rolling, heat treatment, and precision cold processing etc. Consequently, research on the entire life cycle of metal production and application is imperative. Only by integrating the complete life cycle of the technological chain can the properties of metals be fully and appropriately utilized. Previous research has primarily focused on breakthroughs at individual “points”, often neglecting the “chain”. This has led to a “chain break” phenomenon in the processing of metal materials and components, resulting in high-end components that are unqualified, unstable, unreliable, or heavily dependent on imports. To address these issues, this study takes the research on the 8-meter-diameter main bearing of a shield tunneling machine as an example. It adopts novel V, B, and rare earth co-alloying in bearing steel for bearing rings, leveraging high-purity and high-homogeneity bearing steel production, as well as precision machining of high-performance bearing components. The study elucidates key technologies and their correlations throughout the bearing manufacturing process, with a particular focus on heat treatment technology that linking bearing materials to components and precision machining technology for large rollers. Through the development of whole-chain technologies, the main bearing for the shield tunneling machine was successfully manufactured. Building upon this research, a new concept of metal chain creation is proposed. This concept begins with alloy design and connects the entire chain of raw material preparation, melting, ingot/slab casting, hot forging or rolling, heat treatment, and precision cold processing, assembly manufacturing, evaluation, and application test. By identifying and manipulating critical data at each stage of the process, iterative optimization is achieved. This approach integrates the technological chain, fosters an innovation chain, connects the industrial chain, and realizes controllable manufacturing of metal materials and high-end components.

Key wordsmetal chain    alloy design    hot working    cold working    creation
收稿日期: 2024-12-02     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52031013; 52321001);中国科学院战略性先导科技专项项目(XDC04000000)
通讯作者: 李殿中,dzli@imr.ac.cn,主要从事高端装备用金属材料与加工技术研究
Corresponding author: LI Dianzhong, Academician of Chinese Academy of Science, professor, Tel: (024)83971281, E-mail: dzli@imr.ac.cn
作者简介: 李殿中,男,1967年生,中国科学院院士,研究员。
图1  高端精密机床主轴承制造过程的技术链和生产基地
图2  进口轴承钢与添加微量稀土的轴承钢夹杂物尺寸和形貌对比
图3  盾构机用直径8 m级主轴承实物
图4  金属链创制示意图
1 Wang F, Song M, Elkot M N, et al. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels [J]. Science, 2024, 384: 1017
doi: 10.1126/science.ado2919 pmid: 38815014
2 Qu Z, Zhang Z J, Liu R, et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing [J]. Nature, 2024, 626: 999
3 Zhang S J, To S, Wang S J, et al. A review of surface roughness generation in ultra-precision machining [J]. Int. J. Mach. Tools Manuf., 2015, 91:76
4 Zhu W L, Beaucamp A. Compliant grinding and polishing: A review [J]. Int. J. Mach. Tools Manuf., 2020, 158: 103634
5 Xing J N. Influence of heat treatment process on microstructure and properties of large-scale ring components [D]. Shenyang: Shenyang Jianzhu University, 2023
5 邢嘉妮. 热处理工艺对大型环状构件组织与性能的影响 [D]. 沈阳: 沈阳建筑大学, 2023
6 Liang Y X, Cai X, Zheng L G, et al. Effect of secondary tempering on microstructure and properties of 42CrMo4M steel [J]. Trans. Mater. Heat Treat. 2023, 44(8): 106
6 梁雅鑫, 蔡 欣, 郑雷刚 等. 二次回火对42CrMo4M组织性能的影响 [J]. 材料热处理学报. 2023, 44(8): 106
7 Liang Y X. Development and application of secondary tempering process for large toroidal components in 42CrMo4M [D]. Shenyang: University of Science and Technology of China, 2023
7 梁雅鑫. 大型环形构件用42CrMo4M钢二次回火工艺开发与应用 [D]. 沈阳: 中国科学技术大学, 2023
8 Hu X Q, Feng S B, Gao Y. “ Research and development of main bearings for super large diameter shield machines” Technology report of Strategic Priority Research Program of the Chinese Academy of Sciences [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2023
8 胡小强, 封少波, 高 洋. “超大直径盾构机用主轴承研制”中国科学院战略性先导科技专项科技报告 [R]. 沈阳: 中国科学院金属研究所, 2023
9 Hu X Q, Li D Z. Research and application of 42CrMo4M steel for main bearing large ring of shield machine [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2024
9 胡小强, 李殿中. 盾构机主轴承大型套圈用42CrMo4M钢研发与应用 [R]. 沈阳: 中国科学院金属研究所, 2024
10 Li D Z, Chen X Q, Fu P X, et al. Inclusion fotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2014, 5: 5572
11 Cao Y F, Chen Y, Li D Z. Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling [J]. Acta. Mater., 2016, 107: 325
12 Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9 pmid: 36075967
13 Li Y H, Jiang Z H, Wang P, et al. Effect of a modified quenching on impact toughness of 52100 bearing steels [J]. J. Mater. Sci. Technol., 2023, 160: 96
doi: 10.1016/j.jmst.2023.02.057
14 Liu T Y, Xia Y F, Li R H, et al. The combined effects of carbides and martensite blocks heterogeneity on the fatigue life scatter in bearing steel [J]. Mater. Sci. Eng., 2024, A915: 147277
15 Li Y H, Jiang Z H, Li L L, et al. Wear behavior and damage characterization for AISI 52100 bearing steels: Effect of hardness and spherical carbides [J]. J. Mater. Res. Technol., 2024, 30: 8359
16 Li Y H, Jiang Z H, Wang P, et al. Effect of austenitizing temperature on isothermal quenching microstructure and mechanical properties of 52100 bearing steel [J]. Mater. Sci. Eng., 2024, A892: 146051
17 Li Z, Fu Z H, Yang C Y, et al. Improving the microstructure and impact toughness of bainite/martensite bearing steel by rare earth treatment [J]. Metall. Mater. Trans., 2024, 55: 4965
18 Li D Z, Wang P. Tailoring microstructures of metals [J]. Acta. Metall. Sin., 2023, 59: 447
doi: 10.11900/0412.1961.2022.00555
18 李殿中, 王 培. 金属材料的组织定制 [J]. 金属学报, 2023, 59: 447
doi: 10.11900/0412.1961.2022.00555
19 Xing J N, Cai X, Zheng L G, et al. Effect of quenching and tempering temperature on microstructure and mechanical properties of a new medium carbon alloy steel 42CrMo4M [J]. Trans. Mater. Heat Treat., 2022, 43(5): 124
19 邢嘉倪, 蔡 欣, 郑雷刚 等. 淬火及回火温度对新型中碳合金钢42CrMo4M组织性能的影响 [J]. 材料热处理学报 2022, 43(5):124
doi: 10.13289/j.issn.1009-6264.2021-0581
20 Wei S T, Wu C J, Zheng L G, et al. Effect of surface quenching process on hardened layer of 42CrMo steel for large bearing ring [J]. Heat Treat. Met., 2022, 47(10): 218
doi: 10.13251/j.issn.0254-6051.2022.10.037
20 魏世同, 吴长江, 郑雷刚 等. 表面淬火工艺对大型轴承套圈用42CrMo钢淬硬层的影响 [J]. 金属热处理, 2022, 47(10): 218
doi: 10.13251/j.issn.0254-6051.2022.10.037
21 Wu C J. Study on surface quenching technology and properties of thick and large section 42CrMo steel [D]. Shenyang: Shenyang University of Technology, 2023
21 吴长江. 厚大断面42CrMo钢表淬工艺与性能研究 [D]. 沈阳: 沈阳工业大学, 2023
22 Feng S B, Wu C J, Yuan L, et al. Research and application of surface quenching process for rings of main slewing bearing used in shield tunneling machines [J]. Bearing, 2024, 11: 121
22 封少波, 吴长江, 袁 麟 等. 盾构机主轴承套圈表面淬火工艺研究及应用 [J]. 轴承, 2024, 11: 121
23 Hu X Q, Feng S B, Gao Y, et al. Review materials of the main bearing with a diameter of 8.01 m for super large shield [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2023
23 胡小强, 封少波, 高 洋 等. 超大直径盾构机用Ф8.01米主轴承评审材料 [R]. 沈阳: 中国科学院金属研究所, 2023
24 Hu X Q. Final research project report on bearing steels with medium carbon content and their heat-treatment processes supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2024
24 胡小强. 中碳轴承钢材料与热处理先导专项课题实施绩效报告 [R]. 沈阳: 中国科学院金属研究所, 2024
25 Liu S, Yan Y, Wang B, et al. Effect of heat treatment on strengthening and toughening mechanism of 42CrMoVRE steel [J]. Trans. Mater. Heat Treat., 2023, 44(6): 90
25 刘 帅, 颜 莹, 王 斌 等. 热处理对42CrMoVRE钢强韧化机制的影响 [J]. 材料热处理学报, 2023, 44(6): 90
26 Qian Q H, Hu X Q, Li S C, et al. Recent advances in key technologies of shield tunnel engineering in China [J]. Tunnel Construction, 2024, 44(5): 897
26 钱七虎, 胡小强, 李树忱 等. 中国盾构隧道工程关键技术的新进展综述 [J]. 隧道建设(中英文), 2024, 44(5): 897
27 Hu X Q. Logarithmic convexity design and machining of large rollers [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2021
27 胡小强. 大型滚子对数凸度设计与加工 [R]. 沈阳: 中国科学院金属研究所, 2021
[1] 王晨充, 徐伟. 综述:合金设计中物理模型与人工智能的集成与发展[J]. 金属学报, 2025, 61(4): 541-560.
[2] 包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[6] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[7] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[8] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[9] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[10] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[12] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[13] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[14] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[15] 张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.