Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 154-164    DOI: 10.11900/0412.1961.2024.00272
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为
韩英1, 吴雨航1, 赵春禄2, 张靖实1, 李振民2, 冉旭1()
1 长春工业大学 材料科学与工程学院 先进结构材料教育部重点实验室 长春 130012
2 北京宝航新材料有限公司 北京 101300
High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy
HAN Ying1, WU Yuhang1, ZHAO Chunlu2, ZHANG Jingshi1, LI Zhenmin2, RAN Xu1()
1 Key Laboratory of Advanced Structural Materials (Ministry of Education), School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
2 Beijing Baohang Advanced Materials Co. Ltd., Beijing 101300, China
引用本文:

韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
Ying HAN, Yuhang WU, Chunlu ZHAO, Jingshi ZHANG, Zhenmin LI, Xu RAN. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. Acta Metall Sin, 2025, 61(1): 154-164.

全文: PDF(4477 KB)   HTML
摘要: 

高温蠕变性能是评价耐热铝合金材料性能的关键指标,是衡量其在高温环境中能否长期稳定应用的重要依据。本工作采用选区激光熔化技术制备了一种新型Al-9Si-3Fe-2Mn-Ni (质量分数,%)合金。通过单轴拉伸蠕变实验研究了该合金在变形温度300~400 ℃和加载应力33~132 MPa条件下的蠕变行为。结果表明,合金在实验条件下具有良好的蠕变性能。应力指数在6.4~13.6之间,并随温度的升高而降低,蠕变变形过程受位错蠕变机制控制。在低于350 ℃时,合金内连续的Al-Si共晶网络通过载荷传递行为降低总应力水平,大体积分数的金属间化合物(IMC)通过Orowan机制进行强化。随着温度的升高,Al-Si共晶组织发生破碎和溶解,IMC和分散Si相起主要强化作用。较高的加载应力可增加合金内的位错滑移系,加剧位错与析出相的相互作用,促进合金失稳与变形,从而降低蠕变寿命。

关键词 铝合金选区激光熔化蠕变行为位错组织演变    
Abstract

The development of high-temperature creep-resistant Al alloys is essential for manufacturing aerospace and transportation equipment. Conventional creep-resistant Al alloys have several limitations, including high costs, complex heat treatment processes, and challenging processing requirements. Selective laser melting (SLM) technology enables the fabrication of metal materials with ultrafine microstructures and high concentrations of strengthening phases due to its rapid cooling rates, substantial temperature gradients, and unique thermal cycling. This capability provides a promising path for the development of next-generation creep-resistant Al alloys. In this study, a novel Al-9Si-3Fe-2Mn-Ni (mass fraction, %) alloy using the SLM technique was developed. This Al-Si alloy was engineered by controlling the diffusion of slow-diffusing elements and intermetallic compounds (IMCs) that strengthen the material. The high-temperature creep behavior of this alloy was evaluated through uniaxial tensile creep experiments conducted at varying deformation temperatures (300-400 oC) and applied stresses (33-132 MPa). The experimental results demonstrate that the alloy exhibits good creep performance under the experimental conditions. The stress exponent ranged from 6.4 to 13.6, showing a decreasing trend with increasing temperature. The creep deformation mechanism is known as dislocation creep. Below 350 oC, the continuous Al-Si eutectic network reduces the overall stress via load transfer, with IMCs strengthening the alloy via the Orowan mechanism. At 400 oC, the Al-Si eutectic structure fractures and dissolves, with the IMCs and dispersed Si phases providing the primary strengthening mechanism. Increased applied stress amplifies the dislocation slip systems within the alloy, intensifying the interactions between dislocations and precipitates, leading to destabilization and deformation and ultimately reducing creep life.

Key wordsaluminum alloy    selective laser melting    creep behavior    dislocation    microstructure evolution
收稿日期: 2024-08-14     
ZTFLH:  TG132.3  
基金资助:吉林省科技发展计划项目(20220201106GX);国家自然科学基金项目(51974032);国家自然科学基金项目(52174355)
通讯作者: 冉旭,ranxu@ccut.edu.cn,主要从事金属材料及增材制造的研究
Corresponding author: RAN Xu, professor, Tel: 15526853785, E-mail: ranxu@ccut.edu.cn
作者简介: 韩 英,男,1986年生,教授,博士
图1  选区激光熔化(SLM)成形Al-Si-Fe-Mn-Ni合金的初始组织
图2  SLM成形Al-Si-Fe-Mn-Ni合金的模拟相图
图3  SLM成形Al-Si-Fe-Mn-Ni合金的高温蠕变性能及与其他铝合金的性能对比图[31~43]
图4  SLM成形Al-Si-Fe-Mn-Ni合金在温度350 ℃、应力60和93 MPa条件下蠕变后断口附近的EBSD像
图5  SLM成形Al-Si-Fe-Mn-Ni合金在温度350 ℃、应力60和93 MPa条件下蠕变后的Schmid因子、几何必需位错(GNDs)密度和局部取向差(KAM)分布及统计结果
图6  SLM成形Al-Si-Fe-Mn-Ni合金在350 ℃、应力60 MPa条件下断口附近变形组织的TEM像
图7  SLM成形Al-Si-Fe-Mn-Ni合金在温度400 ℃、应力60 MPa条件下蠕变后断口附近的EBSD像
图8  SLM成形Al-Si-Fe-Mn-Ni合金在温度400 ℃、应力60 MPa条件下蠕变后断口附近的TEM像
1 Wang L, Liang X P, Liu B, et al. Stacking fault formation in perovskite Ti3AlC carbides in a TiAl based alloy during creep at 800 oC[J]. Scr. Mater., 2023, 222: 115034
2 Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevated temperature[J]. Acta Metall. Sin., 2011, 47: 53
2 刘晓艳, 潘清林, 陆智伦 等. Al-Cu-Mg-Ag耐热铝合金高温蠕变行为[J]. 金属学报, 2011, 47: 53
doi: 10.3724/SP.J.1037.2010.00369
3 Feng Q, Lu S, Li W D, et al. Recent progress in alloy design and creep mechanism of γ'-strengthened Co-based superalloys[J]. Acta Metall. Sin., 2023, 59: 1125
3 冯 强, 路 松, 李文道 等. γ'相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59: 1125
4 Ma Y, Langdon T G. Creep behavior of an Al-6061 metal matrix composite produced by liquid metallurgy processing[J]. Mater. Sci. Eng., 1997, A230: 183
5 Yang J X, Li J G, Wang M, et al. Effects of heat treatment process on the microstructure and properties of a new cast nickel-based superalloy[J]. Acta Metall. Sin., 2012, 48: 654
5 杨金侠, 李金国, 王 猛 等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报, 2012, 48: 654
doi: 10.3724/SP.J.1037.2012.00061
6 Cai C, Geng H F, Zhang Z. Temperature-dependent cyclic response and microstructure of AlSi10Mg(Cu) alloy[J]. Mater. Charact., 2018, 141: 148
7 Xiao Y K, Yang Q, Bian Z Y, et al. Microstructure, heat treatment and mechanical properties of TiB2/Al-7Si-Cu-Mg alloy fabricated by selective laser melting[J]. Mater. Sci. Eng., 2021, A809: 140951
8 Xue H, Yang C, De Geuser F, et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering[J]. Nat. Mater., 2023, 22: 434
9 Bai X R, Xie H N, Zhang X, et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys[J]. Nat. Mater., 2024, 23: 747
10 Rong X D, Zhao D D, Chen X F, et al. Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al-CuO composite[J]. Acta Mater., 2023, 256: 119110
11 Cai X M, Zhang W, Fan Z Q, et al. Damage modes and response mechanisms of AlSi10Mg porous structures under different loading strain rates[J]. Acta Metall. Sin., 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
11 蔡宣明, 张 伟, 范志强 等. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
12 Gazizov M, Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al-Cu-Mg-Ag alloy[J]. Mater. Sci. Eng., 2015, A625: 119
13 Gao J B, Li Z C, Liu J, et al. Current situation and prospect of computationally assisted design in high-performance additive manufactured aluminum alloys: A review[J]. Acta Metall. Sin., 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
13 高建宝, 李志诚, 刘 佳 等. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
14 Yang T Y, Cui L, He D Y, et al. Enhancement of microstructure and mechanical property of AlSi10Mg-Er-Zr alloys fabricated by selective laser melting[J]. Acta Metall. Sin., 2022, 58: 1108
14 杨天野, 崔 丽, 贺定勇 等. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58: 1108
doi: 10.11900/0412.1961.2021.00085
15 Bahl S, Wu T, Michi R A, et al. An additively manufactured near-eutectic Al-Ce-Ni-Mn-Zr alloy with high creep resistance[J]. Acta Mater., 2024, 268: 119787
16 Griffiths S, Croteau J R, Rossell M D, et al. Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Mater., 2020, 188: 192
doi: 10.1016/j.actamat.2020.02.008
17 Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
18 Huang S, Guo S Q, Zhou B, et al. Microstructure and properties of AlSi7Mg alloy fabricated by selective laser melting[J]. China Foundry, 2021, 18: 416
doi: 10.1007/s41230-021-1004-z
19 Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Mater., 2016, 117: 311
20 Cai Q, Fang C M, Lordan E, et al. A novel Al-Si-Ni-Fe near-eutectic alloy for elevated temperature applications[J]. Scr. Mater., 2023, 237: 115707
21 Jansen A M, Dunand D C. Creep of metals containing high volume fractions of unshearable dispersoids: II. Experiments in the Al Al2O3 system and comparison to models[J]. Acta Mater., 1997, 45: 4583
22 Knipling K E, Dunand D C. Creep resistance of cast and aged Al-0.1Zr and Al-0.1Zr-0.1Ti (at.%) alloys at 300-400 oC[J]. Scr. Mater., 2008, 59: 387
23 Guo S K, Ma Z L, Xia G H, et al. Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure[J]. Acta Mater., 2024, 263: 119492
24 Dragone T L, Nix W D. Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals[J]. Acta Mater., 1990, 38: 1941
25 Attar H, Ehtemam-Haghighi S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review[J]. Int. J. Mach. Tool Manuf., 2018, 133: 85
26 Corby R N, Black P J. The structure of α-(AlFeSi) by anomalous-dispersion methods[J]. Acta Cryst., 1977, 33B: 3468
27 Boyd J D, Nicholson R B. The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys[J]. Acta Metall., 1971, 19: 1379
28 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365
29 Mclean M. On the threshold stress for dislocation creep in particle strengthened alloys[J]. Acta Metall., 1985, 33: 545
30 Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982: 166
31 Zhang M, Lewis R J, Gibeling J C. Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy[J]. Mater. Sci. Eng., 2021, A805: 140796
32 Park K T, Mohamed F A. Creep strengthening in a discontinuous SiC-Al composite[J]. Metall. Mater. Trans., 1995, 26A: 3119
33 Uzan N E, Shneck R, Yeheskel O, et al. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM)[J]. Addit. Manuf., 2018, 24: 257
34 Wakashima K, Moriyama T, Mori T. Steady-state creep of a particulate SiC/6061 Al composite[J]. Acta Mater., 2000, 48: 891
35 De Luca A, Seidman D N, Dunand D C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening[J]. Acta Mater., 2020, 194: 60
36 Ringer S P, Yeung W, Muddle B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures[J]. Acta Metall. Mater., 1994, 42: 1715
37 Ng D S, Dunand D C. Aging- and creep-resistance of a cast hypoeutectic Al-6.9Ce-9.3Mg (wt.%) alloy[J]. Mater. Sci. Eng., 2020, A786: 139398
38 Farkoosh A R. Development of creep-resistant Al-Si cast alloys strengthened with nanoscale dispersoids[D]. Montreal: McGill University, 2015
39 Farkoosh A R, Chen X G, Pekguleryuz M. Interaction between molybdenum and manganese to form effective dispersoids in an Al-Si-Cu-Mg alloy and their influence on creep resistance[J]. Mater. Sci. Eng., 2015, A627: 127
40 Fiedler T, Dörries K, Rösler J. Selective laser melting of Al and AlSi10Mg: Parameter study and creep experiments[J]. Prog. Addit. Manuf., 2022, 7: 583
41 Michi R A, Sisco K, Bahl S, et al. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy[J]. Acta Mater., 2022, 227: 117699
42 Wu T, Poplawsky J D, Allard L F, et al. Microstructure and strengthening of Al-6Ce-3Ni-0.7Fe (wt%) alloy manufactured by laser powder-bed fusion[J]. Addit. Manuf., 2023, 78: 103858
43 Rakhmonov J U, Weiss D, Dunand D C. Solidification microstructure, aging evolution and creep resistance of laser powder-bed fused Al-7Ce-8Mg (wt%)[J]. Addit. Manuf., 2022, 55: 102862
44 Qu P F, Yang W C, Liu C, et al. Tensile deformation dominated by matrix dislocations at intermediate temperatures revealed using in-situ EBSD in superalloys[J]. Mater. Res. Lett., 2024, 12: 116
45 Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metall. Sin., 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
45 董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
46 Li B B, Li Q A, Chen X Y, et al. High temperature creep behavior of Mg-9Gd-4Y-1Zn-0.5Zr alloy[J]. Trans. Mater. Heat Treat., 2018, 39(6): 49
46 孟波波, 李全安, 陈晓亚 等. Mg-9Gd-4Y-1Zn-0.5Zr合金的高温蠕变行为[J]. 材料热处理学报, 2018, 39(6): 49
doi: 10.13289/j.issn.1009-6264.2018-0046
47 Theska F, Yang Y, Sisco K D, et al. On the high-temperature stability of the Al8Cu3Ce intermetallic in an additively manufactured Al-Cu-Ce-Zr alloy[J]. Mater. Charact., 2022, 191: 112109
48 Zhao Y H, Chang Y P, Li X P, et al. Phase precipitation and strengthening behavior of a novel polycrystalline Ni3Al-based intermetallic alloy at 1100 oC[J]. Acta Mater., 2024, 265: 119601
49 Liu Y, Michi R A, Dunand D C. Cast near-eutectic Al-12.5wt.% Ce alloy with high coarsening and creep resistance[J]. Mater. Sci. Eng., 2019, A767: 138440
50 Carreño F, Ruano O A. Separated contribution of particles and matrix on the creep behavior of dispersion strengthened materials[J]. Acta Mater., 1998, 46: 159
51 Spigarelli S, Cabibbo M, Evangelista E, et al. Evaluation of the creep properties of an Al-17Si-1Mg-0.7Cu alloy[J]. Mater. Lett., 2002, 56: 1059
52 Rösler J, Bao G, Evans A G. The effects of diffusional relaxation on the creep strength of composites[J]. Acta Metall. Mater., 1991, 39: 2733
53 Chesser I, Koju R K, Vellore A, et al. Atomistic modeling of metal-nonmetal interphase boundary diffusion[J]. Acta Mater., 2023, 257: 119172
54 Zan Y N, Zhou Y T, Liu Z Y, et al. Microstructure and mechanical properties of (B4C + Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages[J]. Mater. Sci. Eng., 2020, A773: 138840
55 Peng H L, Jin C, Dong B X, et al. In-situ tailoring microstructure well-balanced strength and ductility in Al-Cu alloy[J]. Mater. Sci. Eng., 2023, A880: 145350
56 Li Z, Zhang Z, Chen X G. Effect of metastable Mg2Si and dislocations on α-Al(MnFe)Si dispersoid formation in Al-Mn-Mg 3xxx alloys[J]. Metall. Mater. Trans., 2018, 49A: 5799
[1] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[2] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[3] 卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
[4] 蔡宣明, 张伟, 范志强, 高玉波, 王俊元, 张柱军. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60(7): 857-868.
[5] 柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.
[6] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[7] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[8] 李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响[J]. 金属学报, 2024, 60(3): 311-322.
[9] 白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
[10] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[11] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[12] 王勇, 张卫文, 杨超, 王智. 钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为[J]. 金属学报, 2024, 60(2): 247-260.
[13] 耿汝伟, 王林, 魏正英, 麻宁绪. 铝合金熔滴复合电弧增材组织演化及外延生长特性[J]. 金属学报, 2024, 60(11): 1584-1594.
[14] 张振武, 李继康, 许文贺, 沈沐宇, 戚磊一, 郑可盈, 李伟, 魏青松. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响[J]. 金属学报, 2024, 60(11): 1471-1486.
[15] 陈玉勇, 时国浩, 杜之明, 张宇, 常帅. 增材制造TiAl合金的研究进展[J]. 金属学报, 2024, 60(1): 1-15.