|
|
选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为 |
韩英1, 吴雨航1, 赵春禄2, 张靖实1, 李振民2, 冉旭1( ) |
1 长春工业大学 材料科学与工程学院 先进结构材料教育部重点实验室 长春 130012 2 北京宝航新材料有限公司 北京 101300 |
|
High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy |
HAN Ying1, WU Yuhang1, ZHAO Chunlu2, ZHANG Jingshi1, LI Zhenmin2, RAN Xu1( ) |
1 Key Laboratory of Advanced Structural Materials (Ministry of Education), School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China 2 Beijing Baohang Advanced Materials Co. Ltd., Beijing 101300, China |
引用本文:
韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
Ying HAN,
Yuhang WU,
Chunlu ZHAO,
Jingshi ZHANG,
Zhenmin LI,
Xu RAN.
High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. Acta Metall Sin, 2025, 61(1): 154-164.
1 |
Wang L, Liang X P, Liu B, et al. Stacking fault formation in perovskite Ti3AlC carbides in a TiAl based alloy during creep at 800 oC[J]. Scr. Mater., 2023, 222: 115034
|
2 |
Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevated temperature[J]. Acta Metall. Sin., 2011, 47: 53
|
2 |
刘晓艳, 潘清林, 陆智伦 等. Al-Cu-Mg-Ag耐热铝合金高温蠕变行为[J]. 金属学报, 2011, 47: 53
doi: 10.3724/SP.J.1037.2010.00369
|
3 |
Feng Q, Lu S, Li W D, et al. Recent progress in alloy design and creep mechanism of γ'-strengthened Co-based superalloys[J]. Acta Metall. Sin., 2023, 59: 1125
|
3 |
冯 强, 路 松, 李文道 等. γ'相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59: 1125
|
4 |
Ma Y, Langdon T G. Creep behavior of an Al-6061 metal matrix composite produced by liquid metallurgy processing[J]. Mater. Sci. Eng., 1997, A230: 183
|
5 |
Yang J X, Li J G, Wang M, et al. Effects of heat treatment process on the microstructure and properties of a new cast nickel-based superalloy[J]. Acta Metall. Sin., 2012, 48: 654
|
5 |
杨金侠, 李金国, 王 猛 等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报, 2012, 48: 654
doi: 10.3724/SP.J.1037.2012.00061
|
6 |
Cai C, Geng H F, Zhang Z. Temperature-dependent cyclic response and microstructure of AlSi10Mg(Cu) alloy[J]. Mater. Charact., 2018, 141: 148
|
7 |
Xiao Y K, Yang Q, Bian Z Y, et al. Microstructure, heat treatment and mechanical properties of TiB2/Al-7Si-Cu-Mg alloy fabricated by selective laser melting[J]. Mater. Sci. Eng., 2021, A809: 140951
|
8 |
Xue H, Yang C, De Geuser F, et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering[J]. Nat. Mater., 2023, 22: 434
|
9 |
Bai X R, Xie H N, Zhang X, et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys[J]. Nat. Mater., 2024, 23: 747
|
10 |
Rong X D, Zhao D D, Chen X F, et al. Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al-CuO composite[J]. Acta Mater., 2023, 256: 119110
|
11 |
Cai X M, Zhang W, Fan Z Q, et al. Damage modes and response mechanisms of AlSi10Mg porous structures under different loading strain rates[J]. Acta Metall. Sin., 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
|
11 |
蔡宣明, 张 伟, 范志强 等. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
|
12 |
Gazizov M, Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al-Cu-Mg-Ag alloy[J]. Mater. Sci. Eng., 2015, A625: 119
|
13 |
Gao J B, Li Z C, Liu J, et al. Current situation and prospect of computationally assisted design in high-performance additive manufactured aluminum alloys: A review[J]. Acta Metall. Sin., 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
|
13 |
高建宝, 李志诚, 刘 佳 等. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
|
14 |
Yang T Y, Cui L, He D Y, et al. Enhancement of microstructure and mechanical property of AlSi10Mg-Er-Zr alloys fabricated by selective laser melting[J]. Acta Metall. Sin., 2022, 58: 1108
|
14 |
杨天野, 崔 丽, 贺定勇 等. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58: 1108
doi: 10.11900/0412.1961.2021.00085
|
15 |
Bahl S, Wu T, Michi R A, et al. An additively manufactured near-eutectic Al-Ce-Ni-Mn-Zr alloy with high creep resistance[J]. Acta Mater., 2024, 268: 119787
|
16 |
Griffiths S, Croteau J R, Rossell M D, et al. Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Mater., 2020, 188: 192
doi: 10.1016/j.actamat.2020.02.008
|
17 |
Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
|
18 |
Huang S, Guo S Q, Zhou B, et al. Microstructure and properties of AlSi7Mg alloy fabricated by selective laser melting[J]. China Foundry, 2021, 18: 416
doi: 10.1007/s41230-021-1004-z
|
19 |
Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Mater., 2016, 117: 311
|
20 |
Cai Q, Fang C M, Lordan E, et al. A novel Al-Si-Ni-Fe near-eutectic alloy for elevated temperature applications[J]. Scr. Mater., 2023, 237: 115707
|
21 |
Jansen A M, Dunand D C. Creep of metals containing high volume fractions of unshearable dispersoids: II. Experiments in the Al Al2O3 system and comparison to models[J]. Acta Mater., 1997, 45: 4583
|
22 |
Knipling K E, Dunand D C. Creep resistance of cast and aged Al-0.1Zr and Al-0.1Zr-0.1Ti (at.%) alloys at 300-400 oC[J]. Scr. Mater., 2008, 59: 387
|
23 |
Guo S K, Ma Z L, Xia G H, et al. Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure[J]. Acta Mater., 2024, 263: 119492
|
24 |
Dragone T L, Nix W D. Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals[J]. Acta Mater., 1990, 38: 1941
|
25 |
Attar H, Ehtemam-Haghighi S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review[J]. Int. J. Mach. Tool Manuf., 2018, 133: 85
|
26 |
Corby R N, Black P J. The structure of α-(AlFeSi) by anomalous-dispersion methods[J]. Acta Cryst., 1977, 33B: 3468
|
27 |
Boyd J D, Nicholson R B. The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys[J]. Acta Metall., 1971, 19: 1379
|
28 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365
|
29 |
Mclean M. On the threshold stress for dislocation creep in particle strengthened alloys[J]. Acta Metall., 1985, 33: 545
|
30 |
Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982: 166
|
31 |
Zhang M, Lewis R J, Gibeling J C. Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy[J]. Mater. Sci. Eng., 2021, A805: 140796
|
32 |
Park K T, Mohamed F A. Creep strengthening in a discontinuous SiC-Al composite[J]. Metall. Mater. Trans., 1995, 26A: 3119
|
33 |
Uzan N E, Shneck R, Yeheskel O, et al. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM)[J]. Addit. Manuf., 2018, 24: 257
|
34 |
Wakashima K, Moriyama T, Mori T. Steady-state creep of a particulate SiC/6061 Al composite[J]. Acta Mater., 2000, 48: 891
|
35 |
De Luca A, Seidman D N, Dunand D C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening[J]. Acta Mater., 2020, 194: 60
|
36 |
Ringer S P, Yeung W, Muddle B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures[J]. Acta Metall. Mater., 1994, 42: 1715
|
37 |
Ng D S, Dunand D C. Aging- and creep-resistance of a cast hypoeutectic Al-6.9Ce-9.3Mg (wt.%) alloy[J]. Mater. Sci. Eng., 2020, A786: 139398
|
38 |
Farkoosh A R. Development of creep-resistant Al-Si cast alloys strengthened with nanoscale dispersoids[D]. Montreal: McGill University, 2015
|
39 |
Farkoosh A R, Chen X G, Pekguleryuz M. Interaction between molybdenum and manganese to form effective dispersoids in an Al-Si-Cu-Mg alloy and their influence on creep resistance[J]. Mater. Sci. Eng., 2015, A627: 127
|
40 |
Fiedler T, Dörries K, Rösler J. Selective laser melting of Al and AlSi10Mg: Parameter study and creep experiments[J]. Prog. Addit. Manuf., 2022, 7: 583
|
41 |
Michi R A, Sisco K, Bahl S, et al. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy[J]. Acta Mater., 2022, 227: 117699
|
42 |
Wu T, Poplawsky J D, Allard L F, et al. Microstructure and strengthening of Al-6Ce-3Ni-0.7Fe (wt%) alloy manufactured by laser powder-bed fusion[J]. Addit. Manuf., 2023, 78: 103858
|
43 |
Rakhmonov J U, Weiss D, Dunand D C. Solidification microstructure, aging evolution and creep resistance of laser powder-bed fused Al-7Ce-8Mg (wt%)[J]. Addit. Manuf., 2022, 55: 102862
|
44 |
Qu P F, Yang W C, Liu C, et al. Tensile deformation dominated by matrix dislocations at intermediate temperatures revealed using in-situ EBSD in superalloys[J]. Mater. Res. Lett., 2024, 12: 116
|
45 |
Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metall. Sin., 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
|
45 |
董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
|
46 |
Li B B, Li Q A, Chen X Y, et al. High temperature creep behavior of Mg-9Gd-4Y-1Zn-0.5Zr alloy[J]. Trans. Mater. Heat Treat., 2018, 39(6): 49
|
46 |
孟波波, 李全安, 陈晓亚 等. Mg-9Gd-4Y-1Zn-0.5Zr合金的高温蠕变行为[J]. 材料热处理学报, 2018, 39(6): 49
doi: 10.13289/j.issn.1009-6264.2018-0046
|
47 |
Theska F, Yang Y, Sisco K D, et al. On the high-temperature stability of the Al8Cu3Ce intermetallic in an additively manufactured Al-Cu-Ce-Zr alloy[J]. Mater. Charact., 2022, 191: 112109
|
48 |
Zhao Y H, Chang Y P, Li X P, et al. Phase precipitation and strengthening behavior of a novel polycrystalline Ni3Al-based intermetallic alloy at 1100 oC[J]. Acta Mater., 2024, 265: 119601
|
49 |
Liu Y, Michi R A, Dunand D C. Cast near-eutectic Al-12.5wt.% Ce alloy with high coarsening and creep resistance[J]. Mater. Sci. Eng., 2019, A767: 138440
|
50 |
Carreño F, Ruano O A. Separated contribution of particles and matrix on the creep behavior of dispersion strengthened materials[J]. Acta Mater., 1998, 46: 159
|
51 |
Spigarelli S, Cabibbo M, Evangelista E, et al. Evaluation of the creep properties of an Al-17Si-1Mg-0.7Cu alloy[J]. Mater. Lett., 2002, 56: 1059
|
52 |
Rösler J, Bao G, Evans A G. The effects of diffusional relaxation on the creep strength of composites[J]. Acta Metall. Mater., 1991, 39: 2733
|
53 |
Chesser I, Koju R K, Vellore A, et al. Atomistic modeling of metal-nonmetal interphase boundary diffusion[J]. Acta Mater., 2023, 257: 119172
|
54 |
Zan Y N, Zhou Y T, Liu Z Y, et al. Microstructure and mechanical properties of (B4C + Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages[J]. Mater. Sci. Eng., 2020, A773: 138840
|
55 |
Peng H L, Jin C, Dong B X, et al. In-situ tailoring microstructure well-balanced strength and ductility in Al-Cu alloy[J]. Mater. Sci. Eng., 2023, A880: 145350
|
56 |
Li Z, Zhang Z, Chen X G. Effect of metastable Mg2Si and dislocations on α-Al(MnFe)Si dispersoid formation in Al-Mn-Mg 3xxx alloys[J]. Metall. Mater. Trans., 2018, 49A: 5799
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|