Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 1-11    DOI: 10.11900/0412.1961.2024.00250
  综述 本期目录 | 过刊浏览 |
共晶高熵合金十年发展回顾(20142024):设计、制备与应用
王志军1(), 白晓昱1, 王健斌1, 姜慧2, 焦文娜3, 李天昕4, 卢一平3,5()
1 西北工业大学 凝固技术国家重点实验室 西安 710072
2 山东科技大学 机械电子工程学院 青岛 266590
3 大连理工大学 材料科学与工程学院 大连 116024
4 贵州大学 材料与冶金学院 贵阳 550025
5 大连理工大学 辽宁省高熵合金材料工程研究中心 大连 116024
Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications
WANG Zhijun1(), BAI Xiaoyu1, WANG Jianbin1, JIANG Hui2, JIAO Wenna3, LI Tianxin4, LU Yiping3,5()
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
4 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
5 Liaoning Engineering Research Center of High-Entropy Alloy Materials, Dalian University of Technology, Dalian 116024, China
引用本文:

王志军, 白晓昱, 王健斌, 姜慧, 焦文娜, 李天昕, 卢一平. 共晶高熵合金十年发展回顾(20142024):设计、制备与应用[J]. 金属学报, 2025, 61(1): 1-11.
Zhijun WANG, Xiaoyu BAI, Jianbin WANG, Hui JIANG, Wenna JIAO, Tianxin LI, Yiping LU. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. Acta Metall Sin, 2025, 61(1): 1-11.

全文: PDF(3081 KB)   HTML
摘要: 

共晶合金是以凝固过程发生共晶反应命名的一类多相合金,具有悠久的历史,是应用最广的铸造合金。高熵合金是多主元的新型合金,自2004年提出以来取得了迅速发展。共晶高熵合金结合了共晶合金和高熵合金的优点,于2014年首次公开报道。经历十年发展,共晶高熵合金已经快速经历了成分设计、组织/性能调控、大规模制备与应用几个阶段。共晶高熵合金独特的微观组织特征和优异的综合性能使其在多个领域展现出广阔的应用前景,成为近年来备受关注的新型合金材料。本文对过去十年共晶高熵合金的成分设计、制备和应用进展进行了回顾,并对未来发展趋势进行了展望。

关键词 共晶高熵合金成分设计组织调控材料制备应用    
Abstract

Eutectic alloys are a class of multi-phase materials named for their formation through eutectic reactions during solidification. They have a long history as the most widely used casting alloys. High-entropy alloys (HEAs), on the other hand, are a novel class of multi-principal element alloys that have rapidly developed since their conceptualization in 2004. Combining the advantages of eutectic alloys and HEAs, eutectic high-entropy alloys (EHEAs) were first proposed in 2014. Over a decade, EHEAs have been systematically investigated by focusing on alloy design, microstructure/performance optimization, large-scale fabrication, and potential applications. Their unique microstructures and excellent comprehensive properties have made EHEAs promising materials across various domains, garnering significant attention in recent years. By revisiting the advances in composition design, manufacturing, and applications of EHEAs over the past decade, this review offered insights into future trends and developments in this rapidly evolving field.

Key wordseutectic high-entropy alloy    composition design    microstructure control    material manufacturing    application
收稿日期: 2024-07-23     
ZTFLH:  TG139  
通讯作者: 王志军,zhjwang@nwpu.edu.cn,主要从事高熵合金设计与强韧化的研究;
卢一平,luyiping@dlut.edu.cn,主要从事高熵合金的成分设计理论以及制备技术的研究
Corresponding author: WANG Zhijun, professor, Tel: 13484671484, E-mail: zhjwang@nwpu.edu.cn;
LU Yiping, professor, Tel: (0411)84709400, E-mail: luyiping@dlut.edu.cn
作者简介: 王志军,男,1984年生,教授
图1  共晶高熵合金的成分设计方法[22,23,25,26]
图2  机器学习辅助的共晶高熵合金成分设计方法[27]
图3  典型共晶高熵合金凝固组织[34,38,39]
图4  多种工艺调控下的共晶高熵合金微观组织[48,50~54]
图5  具有不同微观组织的共晶高熵合金的力学性能[48,50~54]
图6  共晶高熵合金工业化制备示例
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Miracle D B, Miller J D, Senkov O N, et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 2014, 16: 494
4 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Mater., 2013, 61: 5743
5 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
6 Wu S Y, Qiao D X, Zhao H L, et al. A novel NbTaW0.5(Mo2C) x refractory high-entropy alloy with excellent mechanical properties[J]. J. Alloys Compd., 2021, 889: 161800
7 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloys Compd., 2011, 509: 6043
8 Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms[J]. Acta Mater., 2018, 142: 131
9 Oses C, Toher C, Curtarolo S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5: 295
10 Akrami S, Edalati P, Fuji M, et al. High-entropy ceramics: Review of principles, production and applications[J]. Mater. Sci. Eng., 2021, R146: 100644
11 Huang Y, Yeh J W, Yang A C M. “High-entropy polymers”: A new route of polymer mixing with suppressed phase separation[J]. Materialia, 2021, 15: 100978
12 Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials[J]. Prog. Mater. Sci., 2022, 123: 100793
13 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
14 Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Mater., 2017, 141: 59
15 Chang I, Cai Q. From simple binary to complex multicomponent eutectic alloys[J]. Prog. Mater. Sci., 2022, 123: 100779
16 Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys[J]. J. Alloys Compd., 2020, 827: 154226
17 Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
18 Wang X, Zhai W, Li H, et al. Ultrasounds induced eutectic structure transition and associated mechanical property enhancement of FeCoCrNi2.1Al high entropy alloy[J]. Acta Mater., 2023, 252: 118900
19 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
20 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
21 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60: 1
22 He F, Wang Z J, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNb x [J]. J. Alloys Compd., 2016, 656: 284
23 Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
24 Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
25 Chanda B, Das J. An assessment on the stability of the eutectic phases in high entropy alloys[J]. J. Alloys Compd., 2019, 798: 167
26 Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Mater. Des., 2018, 143: 49
27 Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system[J]. Acta Mater., 2020, 182: 278
28 Jiang H, Li L, Ni Z L, et al. Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy[J]. Mater. Chem. Phys., 2022, 290: 126631
29 Dong Y, Lu Y P. Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy[J]. J. Mater. Eng. Perform., 2018, 27: 109
30 Wang J B, Wang Z J, Shi X B, et al. Alloying behavior of W and Mo in the as-cast dual-phase FeNiCrAl multi-component alloys[J]. J. Alloys Compd., 2023, 951: 169951
31 Chen X H, Xie W Y, Zhu J, et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Intermetallics, 2021, 128: 107024
32 Chen Z H, Wang J B, Jia Y H, et al. Significantly improving the high-temperature tensile properties of Al17Cr10Fe36Ni36Mo1 alloys by microalloying Hf[J]. Materials, 2023, 16: 6836
33 Jia Y H, Wang Z J, Wu Q F, et al. Boron microalloying for high-temperature eutectic high-entropy alloys[J]. Acta Mater., 2024, 262: 119427
34 Lu Y P, Gao X X, Dong Y, et al. Preparing bulk ultrafine-microstructure high-entropy via alloys direct solidification[J]. Nanoscale, 2018, 10: 1912
35 Huo W Y, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTa x eutectic high-entropy alloys[J]. J. Alloys Compd., 2018, 735: 897
36 Ye X C, Lei H F, Liu X W, et al. Design of synergistic alloying CoCrFeNi eutectic high entropy alloy based on infinite solid solution[J]. Mater. Lett., 2023, 343: 134395
37 Liu X, Yang Z S, Cui D C, et al. Enhancing the yield strength of casting eutectic high-entropy alloys via coherent precipitates[J]. Metall. Mater. Trans., 2023, 54A: 4620
38 Jiang H, Jiang L, Qiao D X, et al. Effect of niobium on microstructure and properties of the CoCrFeNbNi x high entropy alloys[J]. J. Mater. Sci. Technol., 2017, 33: 712
doi: 10.1016/j.jmst.2016.09.016
39 Jin X, Liang Y X, Bi J, et al. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing[J]. Materialia, 2020, 10: 100639
40 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
41 Dong Y, Yao Z Q, Huang X, et al. Microstructure and mechanical properties of AlCo x CrFeNi3 - x eutectic high-entropy-alloy system[J]. J. Alloys Compd., 2020, 823: 153886
42 Wu Q F, Wang Z J, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
43 Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
44 Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC[J]. Corros. Sci., 2021, 180: 109191
45 Wang L, Yao C L, Shen J, et al. Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Intermetallics, 2020, 118: 106681
46 Jiang X, Li Y, Shi P J, et al. Synergistic control of microstructures and properties in eutectic high-entropy alloys via directional solidification and strong magnetic field[J]. J. Mater. Res. Technol., 2024, 28: 4440
47 Wischi M, Campo K N, Starck L F, et al. Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Mater. Res. Technol., 2022, 20: 811
48 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
49 Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
50 Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608: 62
51 Zhou K X, Li J J, Wu Q F, et al. Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy[J]. Scr. Mater., 2021, 201: 113952
52 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae[J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
53 Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Mater. Sci. Eng., 2016, A675: 99
54 Wu Q F, He F, Li J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nat. Commun., 2022, 13: 4697
doi: 10.1038/s41467-022-32444-4 pmid: 35948571
55 Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure[J]. Scr. Mater., 2020, 186: 336
56 Lu Y P, Wu X X, Fu Z H, et al. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing[J]. J. Mater. Sci. Technol., 2022, 126: 15
doi: 10.1016/j.jmst.2022.04.004
57 Reddy S R, Yoshida S, Sunkari U, et al. Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys[J]. Mater. Sci. Eng., 2019, A764: 138226
58 Wen X, Cui X F, Jin G, et al. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding:Alloy design and microstructure evolution[J]. Surf. Coat. Technol., 2021, 405: 126728
59 Xiao Y K, Chang X P, Peng X H. Low-density NiAlFeCrMoV eutectic high-entropy alloys with excellent mechanical and wear properties[J]. J. Mater. Res. Technol., 2022, 21: 4908
60 Chen X, Qi J Q, Sui Y W, et al. Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys[J]. Mater. Sci. Eng., 2017, A681: 25
61 Zhang Y L, Li J G, Wang X G, et al. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2019, 35: 902
doi: 10.1016/j.jmst.2018.09.067
62 Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures[J]. Mater. Res. Lett., 2022, 10: 602
63 Li J S, Zhou J, Liu Y F, et al. Microstructural origins of impact resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Mater. Sci. Eng., 2024, A890: 145921
64 Bhattacharjee T, Zheng R X, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Chem. Phys., 2018, 210: 207
65 Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates[J]. J. Mater. Sci. Technol., 2023, 136: 97
66 Dong J X, Wu H X, Chen Y, et al. Study on self-lubricating properties of AlCoCrFeNi2.1 eutectic high entropy alloy with electrochemical boronizing[J]. Surf. Coat. Technol., 2022, 433: 128082
67 Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature[J]. Acta Metall. Sin., 2023, 59: 267
67 苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
68 Miao J W, Yao H W, Wang J, et al. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment[J]. J. Alloys Compd., 2022, 894: 162380
69 Peng P, Feng X N, Li S Y, et al. Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2023, 939: 168843
70 Lu J, Zhang H, Li L, et al. Y-Hf Co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC[J]. Corros. Sci., 2021, 187: 109515
71 Huang Y H, Wang J B, Wang Z J, et al. Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy[J]. Nucl. Power Eng., 2023, 44(S1): 137
71 黄赟浩, 王健斌, 王志军 等. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为[J]. 核动力工程, 2023, 44(S1): 137
72 Han X, Chen Q, Chen Q X, et al. Eutectic dual-phase microstructure modulated porous high-entropy alloys as high-performance bifunctional electrocatalysts for water splitting[J]. J. Mater. Chem., 2022, 10A: 11110
73 Li P, Sun H T, Wang S, et al. Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2020, 814: 152322
74 Shen J J, Agrawal P, Rodrigues T A, et al. Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Des., 2022, 223: 111176
75 Li P, Sun H T, Dong H G, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Mater. Sci. Eng., 2021, A814: 141211
[1] 卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
[2] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[3] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[4] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
[5] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[6] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[9] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[10] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[11] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[12] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[13] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[14] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.