|
|
共晶高熵合金十年发展回顾(2014—2024):设计、制备与应用 |
王志军1( ), 白晓昱1, 王健斌1, 姜慧2, 焦文娜3, 李天昕4, 卢一平3,5( ) |
1 西北工业大学 凝固技术国家重点实验室 西安 710072 2 山东科技大学 机械电子工程学院 青岛 266590 3 大连理工大学 材料科学与工程学院 大连 116024 4 贵州大学 材料与冶金学院 贵阳 550025 5 大连理工大学 辽宁省高熵合金材料工程研究中心 大连 116024 |
|
Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications |
WANG Zhijun1( ), BAI Xiaoyu1, WANG Jianbin1, JIANG Hui2, JIAO Wenna3, LI Tianxin4, LU Yiping3,5( ) |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China 3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 4 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China 5 Liaoning Engineering Research Center of High-Entropy Alloy Materials, Dalian University of Technology, Dalian 116024, China |
引用本文:
王志军, 白晓昱, 王健斌, 姜慧, 焦文娜, 李天昕, 卢一平. 共晶高熵合金十年发展回顾(2014—2024):设计、制备与应用[J]. 金属学报, 2025, 61(1): 1-11.
Zhijun WANG,
Xiaoyu BAI,
Jianbin WANG,
Hui JIANG,
Wenna JIAO,
Tianxin LI,
Yiping LU.
Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. Acta Metall Sin, 2025, 61(1): 1-11.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Miracle D B, Miller J D, Senkov O N, et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 2014, 16: 494
|
4 |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Mater., 2013, 61: 5743
|
5 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
|
6 |
Wu S Y, Qiao D X, Zhao H L, et al. A novel NbTaW0.5(Mo2C) x refractory high-entropy alloy with excellent mechanical properties[J]. J. Alloys Compd., 2021, 889: 161800
|
7 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloys Compd., 2011, 509: 6043
|
8 |
Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms[J]. Acta Mater., 2018, 142: 131
|
9 |
Oses C, Toher C, Curtarolo S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5: 295
|
10 |
Akrami S, Edalati P, Fuji M, et al. High-entropy ceramics: Review of principles, production and applications[J]. Mater. Sci. Eng., 2021, R146: 100644
|
11 |
Huang Y, Yeh J W, Yang A C M. “High-entropy polymers”: A new route of polymer mixing with suppressed phase separation[J]. Materialia, 2021, 15: 100978
|
12 |
Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials[J]. Prog. Mater. Sci., 2022, 123: 100793
|
13 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
14 |
Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Mater., 2017, 141: 59
|
15 |
Chang I, Cai Q. From simple binary to complex multicomponent eutectic alloys[J]. Prog. Mater. Sci., 2022, 123: 100779
|
16 |
Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys[J]. J. Alloys Compd., 2020, 827: 154226
|
17 |
Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
|
18 |
Wang X, Zhai W, Li H, et al. Ultrasounds induced eutectic structure transition and associated mechanical property enhancement of FeCoCrNi2.1Al high entropy alloy[J]. Acta Mater., 2023, 252: 118900
|
19 |
Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
|
20 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
|
21 |
Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60: 1
|
22 |
He F, Wang Z J, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNb x [J]. J. Alloys Compd., 2016, 656: 284
|
23 |
Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
|
24 |
Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
|
25 |
Chanda B, Das J. An assessment on the stability of the eutectic phases in high entropy alloys[J]. J. Alloys Compd., 2019, 798: 167
|
26 |
Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Mater. Des., 2018, 143: 49
|
27 |
Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system[J]. Acta Mater., 2020, 182: 278
|
28 |
Jiang H, Li L, Ni Z L, et al. Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy[J]. Mater. Chem. Phys., 2022, 290: 126631
|
29 |
Dong Y, Lu Y P. Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy[J]. J. Mater. Eng. Perform., 2018, 27: 109
|
30 |
Wang J B, Wang Z J, Shi X B, et al. Alloying behavior of W and Mo in the as-cast dual-phase FeNiCrAl multi-component alloys[J]. J. Alloys Compd., 2023, 951: 169951
|
31 |
Chen X H, Xie W Y, Zhu J, et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Intermetallics, 2021, 128: 107024
|
32 |
Chen Z H, Wang J B, Jia Y H, et al. Significantly improving the high-temperature tensile properties of Al17Cr10Fe36Ni36Mo1 alloys by microalloying Hf[J]. Materials, 2023, 16: 6836
|
33 |
Jia Y H, Wang Z J, Wu Q F, et al. Boron microalloying for high-temperature eutectic high-entropy alloys[J]. Acta Mater., 2024, 262: 119427
|
34 |
Lu Y P, Gao X X, Dong Y, et al. Preparing bulk ultrafine-microstructure high-entropy via alloys direct solidification[J]. Nanoscale, 2018, 10: 1912
|
35 |
Huo W Y, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTa x eutectic high-entropy alloys[J]. J. Alloys Compd., 2018, 735: 897
|
36 |
Ye X C, Lei H F, Liu X W, et al. Design of synergistic alloying CoCrFeNi eutectic high entropy alloy based on infinite solid solution[J]. Mater. Lett., 2023, 343: 134395
|
37 |
Liu X, Yang Z S, Cui D C, et al. Enhancing the yield strength of casting eutectic high-entropy alloys via coherent precipitates[J]. Metall. Mater. Trans., 2023, 54A: 4620
|
38 |
Jiang H, Jiang L, Qiao D X, et al. Effect of niobium on microstructure and properties of the CoCrFeNbNi x high entropy alloys[J]. J. Mater. Sci. Technol., 2017, 33: 712
doi: 10.1016/j.jmst.2016.09.016
|
39 |
Jin X, Liang Y X, Bi J, et al. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing[J]. Materialia, 2020, 10: 100639
|
40 |
Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
|
41 |
Dong Y, Yao Z Q, Huang X, et al. Microstructure and mechanical properties of AlCo x CrFeNi3 - x eutectic high-entropy-alloy system[J]. J. Alloys Compd., 2020, 823: 153886
|
42 |
Wu Q F, Wang Z J, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
|
43 |
Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
|
44 |
Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC[J]. Corros. Sci., 2021, 180: 109191
|
45 |
Wang L, Yao C L, Shen J, et al. Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Intermetallics, 2020, 118: 106681
|
46 |
Jiang X, Li Y, Shi P J, et al. Synergistic control of microstructures and properties in eutectic high-entropy alloys via directional solidification and strong magnetic field[J]. J. Mater. Res. Technol., 2024, 28: 4440
|
47 |
Wischi M, Campo K N, Starck L F, et al. Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Mater. Res. Technol., 2022, 20: 811
|
48 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
49 |
Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
|
50 |
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608: 62
|
51 |
Zhou K X, Li J J, Wu Q F, et al. Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy[J]. Scr. Mater., 2021, 201: 113952
|
52 |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae[J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
53 |
Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Mater. Sci. Eng., 2016, A675: 99
|
54 |
Wu Q F, He F, Li J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nat. Commun., 2022, 13: 4697
doi: 10.1038/s41467-022-32444-4
pmid: 35948571
|
55 |
Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure[J]. Scr. Mater., 2020, 186: 336
|
56 |
Lu Y P, Wu X X, Fu Z H, et al. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing[J]. J. Mater. Sci. Technol., 2022, 126: 15
doi: 10.1016/j.jmst.2022.04.004
|
57 |
Reddy S R, Yoshida S, Sunkari U, et al. Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys[J]. Mater. Sci. Eng., 2019, A764: 138226
|
58 |
Wen X, Cui X F, Jin G, et al. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding:Alloy design and microstructure evolution[J]. Surf. Coat. Technol., 2021, 405: 126728
|
59 |
Xiao Y K, Chang X P, Peng X H. Low-density NiAlFeCrMoV eutectic high-entropy alloys with excellent mechanical and wear properties[J]. J. Mater. Res. Technol., 2022, 21: 4908
|
60 |
Chen X, Qi J Q, Sui Y W, et al. Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys[J]. Mater. Sci. Eng., 2017, A681: 25
|
61 |
Zhang Y L, Li J G, Wang X G, et al. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2019, 35: 902
doi: 10.1016/j.jmst.2018.09.067
|
62 |
Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures[J]. Mater. Res. Lett., 2022, 10: 602
|
63 |
Li J S, Zhou J, Liu Y F, et al. Microstructural origins of impact resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Mater. Sci. Eng., 2024, A890: 145921
|
64 |
Bhattacharjee T, Zheng R X, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Chem. Phys., 2018, 210: 207
|
65 |
Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates[J]. J. Mater. Sci. Technol., 2023, 136: 97
|
66 |
Dong J X, Wu H X, Chen Y, et al. Study on self-lubricating properties of AlCoCrFeNi2.1 eutectic high entropy alloy with electrochemical boronizing[J]. Surf. Coat. Technol., 2022, 433: 128082
|
67 |
Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature[J]. Acta Metall. Sin., 2023, 59: 267
|
67 |
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
|
68 |
Miao J W, Yao H W, Wang J, et al. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment[J]. J. Alloys Compd., 2022, 894: 162380
|
69 |
Peng P, Feng X N, Li S Y, et al. Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2023, 939: 168843
|
70 |
Lu J, Zhang H, Li L, et al. Y-Hf Co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC[J]. Corros. Sci., 2021, 187: 109515
|
71 |
Huang Y H, Wang J B, Wang Z J, et al. Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy[J]. Nucl. Power Eng., 2023, 44(S1): 137
|
71 |
黄赟浩, 王健斌, 王志军 等. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为[J]. 核动力工程, 2023, 44(S1): 137
|
72 |
Han X, Chen Q, Chen Q X, et al. Eutectic dual-phase microstructure modulated porous high-entropy alloys as high-performance bifunctional electrocatalysts for water splitting[J]. J. Mater. Chem., 2022, 10A: 11110
|
73 |
Li P, Sun H T, Wang S, et al. Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2020, 814: 152322
|
74 |
Shen J J, Agrawal P, Rodrigues T A, et al. Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Des., 2022, 223: 111176
|
75 |
Li P, Sun H T, Dong H G, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Mater. Sci. Eng., 2021, A814: 141211
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|