Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1451-1460    DOI: 10.11900/0412.1961.2023.00267
  研究论文 本期目录 | 过刊浏览 |
TiZrHfCuBe高熵非晶合金的纳米划痕力学行为
杜银, 李涛, 裴旭辉, 周青(), 王海丰()
西北工业大学 凝固技术国家重点实验室 先进润滑与密封材料研究中心 西安 710072
Nanoscratching Mechanical Performance of the TiZrHfCuBe High-Entropy Metallic Glass
DU Yin, LI Tao, PEI Xuhui, ZHOU Qing(), WANG Haifeng()
Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

杜银, 李涛, 裴旭辉, 周青, 王海丰. TiZrHfCuBe高熵非晶合金的纳米划痕力学行为[J]. 金属学报, 2024, 60(11): 1451-1460.
Yin DU, Tao LI, Xuhui PEI, Qing ZHOU, Haifeng WANG. Nanoscratching Mechanical Performance of the TiZrHfCuBe High-Entropy Metallic Glass[J]. Acta Metall Sin, 2024, 60(11): 1451-1460.

全文: PDF(2274 KB)   HTML
摘要: 

对于高混合熵为高熵非晶合金带来的特殊结构和高热稳定性与其摩擦性能间内在联系的研究,可为开发具有优异摩擦磨损性能的高熵非晶合金提供新的设计思路。因此,本工作基于纳米压痕及划痕技术研究了TiZrHfCuBe高熵非晶合金在不同划动速率和不同加载速率下的纳米划痕行为,探究了高混合熵为其带来的特殊结构与其纳米摩擦学性能间的内在联系。结果表明:TiZrHfCuBe 高熵非晶合金微观结构由缺陷较少的均匀刚性基体构成,不同区域的纳米压痕硬度均接近理论值的90%以上。在纳米划痕实验中,随着划动速率的增大,TiZrHfCuBe高熵非晶合金的刻划深度基本保持不变,但是残余划痕深度却逐渐减小。这归因于划动速率的增加迟滞了TiZrHfCuBe高熵非晶合金微观结构中剪切转变区的激活以及随后的剪切变形,从而导致划痕过程中的犁沟系数逐渐减小和残余深度的降低。在变力加载的纳米划痕实验中,随着加载力的增加,剪切转变区激活以及随后的剪切变形迟滞效应逐渐减小,导致塑性犁沟系数和划痕深度逐渐增大。

关键词 高熵非晶合金微观结构纳米划痕犁沟系数剪切变形    
Abstract

As emerging advanced materials, metallic glasses demonstrate impressive high strength (approaching the theoretical strength of the material), fracture toughness, corrosion resistance, and thermoplastic-forming ability because of the absence of long-range atomic periodicity, making them potentially replace commercial materials for micro-electromechanical system applications. Although they possess high hardness, their structural instability upon wearing can cause structural relaxation or crystallization, leading to poor tribological behaviors. Inheriting the advantages of conventional metallic glasses and high-entropy alloys, high-entropy metallic glasses have recently attracted considerable attention. Compared with conventional metallic glasses, one prominent characteristic of high-entropy metallic glasses is higher structural thermostability, i.e., reduced devitrification behavior upon heating, which directly affects its respondent behavior in the thermal-stress coupling field. However, the effect of the structural characteristics of high-entropy metallic glasses on wear resistance, which determines the service life of moving parts under actual working conditions, remains unknown. In this study, the nanoscratch behavior of the TiZrHfCuBe high-entropy metallic glass at different scratching and loading rates was investigated based on nanoindentation and nanoscratch technologies. Moreover, the relationship between the special structural characteristics due to high mixing entropy and the nanotribological properties of the TiZrHfCuBe high-entropy metallic glass was studied. The results show that the microstructure of the TiZrHfCuBe high-entropy metallic glass is uniformly composed of a stiff matrix with sparse defects (i.e., free volumes), and the nanohardness in different regions is close to 90% of the theoretical value. In the nanoscratch experiment, the scratching depth of the TiZrHfCuBe high-entropy metallic glass remained unchanged with increasing scratching rate, but the residual scratching depth gradually decreased. This is attributed to the fact that the increase in the scratch rate retards the activation of the shear transition zone and the subsequent nucleation and expansion of shear bands in the microstructure. This eventually reduces the plowing coefficient and residual scratching depth during the scratch process. However, in the nanoscratch experiment under variable force loading, the hysteresis effect of the shear transition zone activation and the subsequent shear deformation could be relieved by increasing the loading force, thereby increasing the plastic plowing coefficient and scratch depth.

Key wordshigh-entropy metallic glass    microstructure    nanoscratch    ploughing coefficient    shear deformation
收稿日期: 2023-06-25     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(51975474);中央高校基本科研业务费项目(3102019JC001);凝固技术国家重点实验室(西北工业大学)自主研究课题项目(2023-BJ-04)
通讯作者: 周青,zhouqing@nwpu.edu.cn,主要从事耐磨非晶合金及高熵合金设计制备及性能的研究;
王海丰,haifengw81@nwpu.edu.cn,主要从事金属基及陶瓷基耐磨及润滑材料设计、制备及应用的研究
Corresponding author: ZHOU Qing, Tel: 13649204790, E-mail: zhouqing@nwpu.edu.cn;
WANG Haifeng, professor, Tel: (029)88460311, E-mail: haifengw81@nwpu.edu.cn
作者简介: 杜 银,男,1992年生,博士
图1  TiZrHfCuBe高熵非晶合金(HE-MG)的HRTEM像、升温过程的DSC曲线、抛光表面的原子力显微镜(AFM)高度像及沿水平方向剖面粗糙度分布曲线
图2  TiZrHfCuBe HE-MG纳米压痕载荷-位移曲线和硬度的统计分布
图3  纳米划痕过程示意图和表面轮廓与纳米划痕过程中划痕距离的关系
图4  TiZrHfCuBe HE-MG在不同划动速率下的摩擦系数-划痕距离曲线及刻划深度和终划深度随划痕距离变化的曲线
图5  不同划动速率下计算得到的塑性犁沟系数随划痕距离变化的曲线及犁沟系数和黏附系数在摩擦系数中所占的比值
图6  TiZrHfCuBe HE-MG不同加载速率下的纳米划痕实验示意图、摩擦系数-划痕距离曲线及1和2 mN/s加载速率下刻划深度和终划深度随划痕距离变化的曲线
图7  不同加载速率下计算得到的塑性犁沟系数及黏附系数随划痕距离变化的曲线
1 Zhao Y, Shang B S, Zhang B, et al. Ultrastable metallic glass by room temperature aging [J]. Sci. Adv., 2019, 8: eabn3623
2 Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
doi: 10.11900/0412.1961.2019.00207
2 金辰日, 杨素媛, 邓学元 等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
doi: 10.11900/0412.1961.2019.00207
3 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
4 Zhang J Y, Zhao C C, Wu Y J, et al. Structural characteristic and crystallization behavior of the (Fe0.33Co0.33Ni0.33)84 - x Cr8Mn8B x high-entropy-amorphous alloy ribbons [J]. Acta Metall. Sin., 2022, 58: 215
4 张金勇, 赵聪聪, 吴宜谨 等. (Fe0.33Co0.33Ni0.33)84 - x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为 [J]. 金属学报, 2022, 58: 215
doi: 10.11900/0412.1961.2021.00100
5 Du Y, Zhou Q, Jia Q, et al. Imparities of shear avalanches dynamic evolution in a metallic glass [J]. Mater. Res. Lett., 2020, 8: 357
6 Liens A, Ter-Ovanessian B, Courtois N, et al. Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses [J]. Corros. Sci., 2020, 177: 108854
7 Zhou Q, Han W C, Luo D W, et al. Mechanical and tribological properties of Zr-Cu-Ni-Al bulk metallic glasses with dual-phase structure [J]. Wear, 2021, 474-475: 203880
8 Jones M R, Kustas A B, Lu P, et al. Environment-dependent tribological properties of bulk metallic glasses [J]. Tribol. Lett., 2020, 68: 123
9 Tam C Y, Shek C H. Abrasive wear of Cu60Zr30Ti10 bulk metallic glass [J]. Mater. Sci. Eng., 2004, A384: 138
10 Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2006, 5: 15
11 Cornuault P H, Colas G, Lenain A, et al. On the diversity of accommodation mechanisms in the tribology of bulk metallic glasses [J]. Tribol. Int., 2020, 141: 105957
12 Rahaman M L, Zhang L C, Ruan H H. Understanding the friction and wear mechanisms of bulk metallic glass under contact sliding [J]. Wear, 2013, 304: 43
13 Yi J, Wang W H, Lewandowski J J. Guiding and deflecting cracks in bulk metallic glasses to increase damage tolerance [J]. Adv. Eng. Mater., 2015, 17: 620
14 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
15 Hua D P, Xia Q S, Wang W, et al. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation [J]. Int. J. Plast., 2021, 142: 102997
16 Daniel R, Zalesak J, Matko I, et al. Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries [J]. Acta Mater., 2022, 223: 117470
17 Du Y, Pei X H, Tang Z W, et al. Mechanical and tribological performance of CoCrNiHf x eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90: 194
18 Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability [J]. Sci. Rep., 2013, 3: 1455
doi: 10.1038/srep01455 pmid: 23492734
19 Zhao S F, Shao Y, Liu X, et al. Pseudo-quinary Ti20Zr20Hf20Be20-(Cu20 - x Ni x ) high entropy bulk metallic glasses with large glass forming ability [J]. Mater. Des., 2015, 87: 625
20 Duan Y J, Zhang L T, QiaoJ C, et al. Intrinsic correlation between the fraction of liquidlike zones and the β relaxation in high-entropy metallic glasses [J]. Phys. Rev. Lett., 2022, 129: 175501
21 Zhou Q, Du Y, Han W C, et al. Identifying the origin of strain rate sensitivity in a high entropy bulk metallic glass [J]. Scr. Mater., 2019, 164: 121
22 Kim J, Oh H S, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass [J]. Acta Mater., 2018, 155: 350
23 Zhang L T, Wang Y J, Pineda E, et al. Sluggish dynamics of homogeneous flow in high-entropy metallic glasses [J]. Scr. Mater., 2022, 214: 114673
24 Xu Q, Şopu D, Yuan X, et al. Interface-related deformation phenomena in metallic glass/high entropy nanolaminates [J]. Acta Mater., 2022, 237: 118191
25 Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
26 Bowden F P, Tabor D. The Friction and Lubrication of Solids [M]. New York: Oxford University Press, 2001: 1
27 Chen Y, Tang C G, Jiang J Z. Bulk metallic glass composites containing B2 phase [J]. Prog. Mater. Sci., 2021, 121: 100799
28 Ning X M, Huang J L, Jia S G, et al. Effect of Al on glass forming ability and thermal stability of Mg-Cu-Y alloys [J]. Chin. J. Nonferrous Met., 2013, 23: 1805
28 宁向梅, 黄金亮, 贾淑果 等. Al对Mg-Cu-Y合金非晶形成能力及热稳定性的影响 [J]. 中国有色金属学报, 2013, 23: 1805
29 Gao Y F, Bei H B. Strength statistics of single crystals and metallic glasses under small stressed volumes [J]. Prog. Mater. Sci., 2016, 82: 118
30 Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness [J]. Mater. Sci. Eng., 2011, A529: 62
31 Sanyal S, Chabri S, Chatterjee S, et al. Tribological behavior of thermomechanically treated Al-Mg-Si alloy by nanoscratch measurements [J]. Tribol. Int., 2016, 102: 125
32 Zhao Y Y, Ye Y X, Liu C Z, et al. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique [J]. Intermetallics, 2019, 113: 106561
33 Archard J F. Contact and rubbing of flat surfaces [J]. J. Appl. Phys., 1953, 24: 981
34 Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions [J]. Wear, 1961, 4: 345
35 Hodge A M, Nieh T G. Evaluating abrasive wear of amorphous alloys using nanoscratch technique [J]. Intermetallics, 2004, 12: 741
36 Greer A L, Rutherford K L, Hutchings I M. Wear resistance of amorphous alloys and related materials [J]. Int. Mater. Rev., 2002, 47: 87
37 Meyer E, Overney R M, Gyalog T, et al. Nanoscience: Friction and Rheology on the Nanometer Scale [M]. Singapore: World Scientific, 1998: 303
38 Lafaye S, Gauthier C, Schirrer R. The ploughing friction: Analytical model with elastic recovery for a conical tip with a blunted spherical extremity [J]. Tribol. Lett., 2006, 21: 95
39 Goddard J, Wilman H. A theory of friction and wear during the abrasion of metals [J]. Wear, 1962, 5: 114
40 Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
41 Wang C, Cao Q P, Wang X D, et al. Intermediate temperature brittleness in metallic glasses [J]. Adv. Mater., 2017, 29: 1605537
42 Liu Z Y, Yang Y, Liu C T. Yielding and shear banding of metallic glasses [J]. Acta Mater., 2013, 61: 5928
43 Cheng L, Jiao Z M, Ma S G, et al. Serrated flow behaviors of a Zr-based bulk metallic glass by nanoindentation [J]. J. Appl. Phys., 2014, 115: 084907
[1] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[2] 刘仲武, 周帮, 廖雪峰, 何家毅. 全高丰度稀土(Ce, La, Y)-Fe-B永磁的研究现状和未来发展[J]. 金属学报, 2024, 60(5): 585-604.
[3] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[6] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[7] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[8] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[9] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[10] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[11] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[12] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[13] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[14] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[15] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.