|
|
TiZrHfCuBe高熵非晶合金的纳米划痕力学行为 |
杜银, 李涛, 裴旭辉, 周青( ), 王海丰( ) |
西北工业大学 凝固技术国家重点实验室 先进润滑与密封材料研究中心 西安 710072 |
|
Nanoscratching Mechanical Performance of the TiZrHfCuBe High-Entropy Metallic Glass |
DU Yin, LI Tao, PEI Xuhui, ZHOU Qing( ), WANG Haifeng( ) |
Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
杜银, 李涛, 裴旭辉, 周青, 王海丰. TiZrHfCuBe高熵非晶合金的纳米划痕力学行为[J]. 金属学报, 2024, 60(11): 1451-1460.
Yin DU,
Tao LI,
Xuhui PEI,
Qing ZHOU,
Haifeng WANG.
Nanoscratching Mechanical Performance of the TiZrHfCuBe High-Entropy Metallic Glass[J]. Acta Metall Sin, 2024, 60(11): 1451-1460.
1 |
Zhao Y, Shang B S, Zhang B, et al. Ultrastable metallic glass by room temperature aging [J]. Sci. Adv., 2019, 8: eabn3623
|
2 |
Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
doi: 10.11900/0412.1961.2019.00207
|
2 |
金辰日, 杨素媛, 邓学元 等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
doi: 10.11900/0412.1961.2019.00207
|
3 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
|
4 |
Zhang J Y, Zhao C C, Wu Y J, et al. Structural characteristic and crystallization behavior of the (Fe0.33Co0.33Ni0.33)84 - x Cr8Mn8B x high-entropy-amorphous alloy ribbons [J]. Acta Metall. Sin., 2022, 58: 215
|
4 |
张金勇, 赵聪聪, 吴宜谨 等. (Fe0.33Co0.33Ni0.33)84 - x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为 [J]. 金属学报, 2022, 58: 215
doi: 10.11900/0412.1961.2021.00100
|
5 |
Du Y, Zhou Q, Jia Q, et al. Imparities of shear avalanches dynamic evolution in a metallic glass [J]. Mater. Res. Lett., 2020, 8: 357
|
6 |
Liens A, Ter-Ovanessian B, Courtois N, et al. Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses [J]. Corros. Sci., 2020, 177: 108854
|
7 |
Zhou Q, Han W C, Luo D W, et al. Mechanical and tribological properties of Zr-Cu-Ni-Al bulk metallic glasses with dual-phase structure [J]. Wear, 2021, 474-475: 203880
|
8 |
Jones M R, Kustas A B, Lu P, et al. Environment-dependent tribological properties of bulk metallic glasses [J]. Tribol. Lett., 2020, 68: 123
|
9 |
Tam C Y, Shek C H. Abrasive wear of Cu60Zr30Ti10 bulk metallic glass [J]. Mater. Sci. Eng., 2004, A384: 138
|
10 |
Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2006, 5: 15
|
11 |
Cornuault P H, Colas G, Lenain A, et al. On the diversity of accommodation mechanisms in the tribology of bulk metallic glasses [J]. Tribol. Int., 2020, 141: 105957
|
12 |
Rahaman M L, Zhang L C, Ruan H H. Understanding the friction and wear mechanisms of bulk metallic glass under contact sliding [J]. Wear, 2013, 304: 43
|
13 |
Yi J, Wang W H, Lewandowski J J. Guiding and deflecting cracks in bulk metallic glasses to increase damage tolerance [J]. Adv. Eng. Mater., 2015, 17: 620
|
14 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
|
15 |
Hua D P, Xia Q S, Wang W, et al. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation [J]. Int. J. Plast., 2021, 142: 102997
|
16 |
Daniel R, Zalesak J, Matko I, et al. Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries [J]. Acta Mater., 2022, 223: 117470
|
17 |
Du Y, Pei X H, Tang Z W, et al. Mechanical and tribological performance of CoCrNiHf x eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90: 194
|
18 |
Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability [J]. Sci. Rep., 2013, 3: 1455
doi: 10.1038/srep01455
pmid: 23492734
|
19 |
Zhao S F, Shao Y, Liu X, et al. Pseudo-quinary Ti20Zr20Hf20Be20-(Cu20 - x Ni x ) high entropy bulk metallic glasses with large glass forming ability [J]. Mater. Des., 2015, 87: 625
|
20 |
Duan Y J, Zhang L T, QiaoJ C, et al. Intrinsic correlation between the fraction of liquidlike zones and the β relaxation in high-entropy metallic glasses [J]. Phys. Rev. Lett., 2022, 129: 175501
|
21 |
Zhou Q, Du Y, Han W C, et al. Identifying the origin of strain rate sensitivity in a high entropy bulk metallic glass [J]. Scr. Mater., 2019, 164: 121
|
22 |
Kim J, Oh H S, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass [J]. Acta Mater., 2018, 155: 350
|
23 |
Zhang L T, Wang Y J, Pineda E, et al. Sluggish dynamics of homogeneous flow in high-entropy metallic glasses [J]. Scr. Mater., 2022, 214: 114673
|
24 |
Xu Q, Şopu D, Yuan X, et al. Interface-related deformation phenomena in metallic glass/high entropy nanolaminates [J]. Acta Mater., 2022, 237: 118191
|
25 |
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
|
26 |
Bowden F P, Tabor D. The Friction and Lubrication of Solids [M]. New York: Oxford University Press, 2001: 1
|
27 |
Chen Y, Tang C G, Jiang J Z. Bulk metallic glass composites containing B2 phase [J]. Prog. Mater. Sci., 2021, 121: 100799
|
28 |
Ning X M, Huang J L, Jia S G, et al. Effect of Al on glass forming ability and thermal stability of Mg-Cu-Y alloys [J]. Chin. J. Nonferrous Met., 2013, 23: 1805
|
28 |
宁向梅, 黄金亮, 贾淑果 等. Al对Mg-Cu-Y合金非晶形成能力及热稳定性的影响 [J]. 中国有色金属学报, 2013, 23: 1805
|
29 |
Gao Y F, Bei H B. Strength statistics of single crystals and metallic glasses under small stressed volumes [J]. Prog. Mater. Sci., 2016, 82: 118
|
30 |
Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness [J]. Mater. Sci. Eng., 2011, A529: 62
|
31 |
Sanyal S, Chabri S, Chatterjee S, et al. Tribological behavior of thermomechanically treated Al-Mg-Si alloy by nanoscratch measurements [J]. Tribol. Int., 2016, 102: 125
|
32 |
Zhao Y Y, Ye Y X, Liu C Z, et al. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique [J]. Intermetallics, 2019, 113: 106561
|
33 |
Archard J F. Contact and rubbing of flat surfaces [J]. J. Appl. Phys., 1953, 24: 981
|
34 |
Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions [J]. Wear, 1961, 4: 345
|
35 |
Hodge A M, Nieh T G. Evaluating abrasive wear of amorphous alloys using nanoscratch technique [J]. Intermetallics, 2004, 12: 741
|
36 |
Greer A L, Rutherford K L, Hutchings I M. Wear resistance of amorphous alloys and related materials [J]. Int. Mater. Rev., 2002, 47: 87
|
37 |
Meyer E, Overney R M, Gyalog T, et al. Nanoscience: Friction and Rheology on the Nanometer Scale [M]. Singapore: World Scientific, 1998: 303
|
38 |
Lafaye S, Gauthier C, Schirrer R. The ploughing friction: Analytical model with elastic recovery for a conical tip with a blunted spherical extremity [J]. Tribol. Lett., 2006, 21: 95
|
39 |
Goddard J, Wilman H. A theory of friction and wear during the abrasion of metals [J]. Wear, 1962, 5: 114
|
40 |
Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
|
41 |
Wang C, Cao Q P, Wang X D, et al. Intermediate temperature brittleness in metallic glasses [J]. Adv. Mater., 2017, 29: 1605537
|
42 |
Liu Z Y, Yang Y, Liu C T. Yielding and shear banding of metallic glasses [J]. Acta Mater., 2013, 61: 5928
|
43 |
Cheng L, Jiao Z M, Ma S G, et al. Serrated flow behaviors of a Zr-based bulk metallic glass by nanoindentation [J]. J. Appl. Phys., 2014, 115: 084907
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|