Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1179-1188    DOI: 10.11900/0412.1961.2022.00427
  研究论文 本期目录 | 过刊浏览 |
Cu含量对K4061合金显微组织和拉伸性能的影响
曹姝婷1,2, 赵剑3, 巩桐兆1, 张少华1(), 张健1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
3.西安航天动力研究所 西安 710100
Effects of Cu Content on the Microstructure and Tensile Property of K4061 Alloy
CAO Shuting1,2, ZHAO Jian3, GONG Tongzhao1, ZHANG Shaohua1(), ZHANG Jian1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
引用本文:

曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
Shuting CAO, Jian ZHAO, Tongzhao GONG, Shaohua ZHANG, Jian ZHANG. Effects of Cu Content on the Microstructure and Tensile Property of K4061 Alloy[J]. Acta Metall Sin, 2024, 60(9): 1179-1188.

全文: PDF(3853 KB)   HTML
摘要: 

随着我国液氧煤油火箭发动机推力的不断提高,亟需一种强度更高、抗富氧燃烧性能更好的新型高温合金材料。K4061合金属于第二代抗富氧烧蚀高温合金,与第一代抗富氧烧蚀高温合金相比,合金成分的显著特点是添加了Cu元素。但是,目前关于Cu在高温合金中的作用机制研究较少。因此,本工作在热力学相平衡计算的基础上,结合DSC、SEM以及TEM实验,研究了添加(1%~10%)Cu (质量分数)对K4061合金析出相以及Cu元素分布的影响。热力学计算结果表明,K4061合金在平衡凝固过程中,首先从液相中析出γ基体,随着液相溶质元素成分逐步提高,在凝固末期又从液相中析出MC型碳化物。此外,Cu的添加对于K4061合金的平衡凝固路径没有显著影响,但会降低K4061合金的固/液相线温度和MC的析出温度。实验结果表明,与平衡凝固不同,在K4061合金的实际凝固过程中,除了γ基体和MC型碳化物之外,在凝固末期还会析出δ相。不同Cu含量的K4061合金中析出相种类并未改变,这与热力学计算结果一致,但是在添加Cu的K4061合金中未观察到富Cu相并且Cu元素也没有偏聚到晶界或者碳化物相中。TEM观察结果表明,Cu富集在强化相内,且会增大强化相尺寸。此外,Cu的添加会降低合金的室温和750℃高温抗拉强度。

关键词 镍基高温合金凝固析出相Cu拉伸性能    
Abstract

The LOX (liquid oxygen)/kerosene rocket engine is widely used in heavy launch vehicles owing to its low cost, high performance, and high reliability. However, the next-generation LOX/kerosene rocket engine requires a new superalloy that can resist oxygen-rich combustion. The K4061 alloy is a second-generation superalloy that has better resistance to oxygen-rich combustion compared to the first-generation superalloy due to the addition of the Cu element in its composition. However, there is limited research on the role of the Cu element in the superalloy. This study investigates the effect of Cu content (mass fraction) ranging from 1% to 10% on the microstructure and Cu distribution of K4061 alloy using thermodynamic calculations along with DSC, SEM, and TEM experiments. The results show that during the equilibrium solidification of K4061 alloy, the γ matrix precipitates first, followed by precipitating MC carbides at the end of solidification. The addition of Cu does not affect the equilibrium solidification path of the alloy; however, it lowers the solidus and liquidus temperatures of the alloy and the precipitation temperature of MC. During the nonequilibrium solidification, the δ phase is also precipitated at the late solidification stage. The types of precipitated phases of K4061 alloy with different Cu contents remain unchanged, consistent with thermodynamic calculations. However, Cu-rich phases are not found in the sample, and Cu does not dissolve in MC in large quantities or segregate into grain boundaries. TEM results show that Cu is enriched in the strengthening phases, and the size of the strengthening phases slightly increases with the addition of Cu during aging heat treatment. Additionally, the addition of Cu reduced the room temperature and 750°C tensile strength of the alloy.

Key wordsNi-base superalloy    solidification    precipitation    Cu    tensile property
收稿日期: 2022-08-31     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(52150233,52203301);中国科学院重点部署项目(ZDRW-CN-2021-2-1)
通讯作者: 张少华,zhangshaohua@imr.ac.cn,主要从事高温合金的研究
Corresponding author: ZHANG Shaohua, associate professor, Tel: (024)23748882, E-mail: zhangshaohua@imr.ac.cn
作者简介: 曹姝婷,女,1996年生,博士生
SampleCAlTiVCrFeCuNbMoNi
K40610.040.90.60.4516.5140.554.754Bal.
K4061-2Cu0.040.90.60.4516.51224.754Bal.
K4061-5Cu0.040.90.60.4516.5954.754Bal.
K4061-8Cu0.040.90.60.4516.5684.754Bal.
K4061-10Cu0.040.90.60.4516.54104.754Bal.
表1  K4061合金试样的名义成分 (mass fraction / %)
图1  不同Cu含量下K4061合金Thermo-Calc平衡态计算结果
图2  K4061合金凝固特征温度随Cu含量的变化
图3  不同Cu含量K4061合金升温与降温DSC曲线
图4  DSC测量的凝固特征温度随Cu含量的变化
图5  不同Cu含量K4061合金试样铸态组织的SEM像
图6  不同Cu含量K4061合金试样热处理态组织的SEM像
图7  不同Cu含量K4061合金试样热处理后强化相形貌的SEM像
图8  铸态K4061-8Cu和K4061-10Cu合金试样的SEM像和EDS元素面扫描图
图9  K4061-10Cu合金试样热处理后晶界处的TEM高角环形暗场(HAADF)像和EDS元素面扫描图
图10  K4061-10Cu合金热处理试样的TEM-HAADF像和EDS元素面扫描图
SampleCTiCrCuNbMo
K406147.364.890.240.0046.740.75
K4061-2Cu47.254.750.230.0047.150.60
K4061-5Cu47.084.800.230.0047.270.60
K4061-8Cu47.314.520.230.0047.370.55
K4061-10Cu47.084.130.230.0048.040.50
表2  Thermo-Calc平衡态计算MC的元素含量结果 (atomic fraction / %)
图11  K4061-10Cu合金热处理试样的TEM像和EDS元素线扫描图
SampleRmRp0.2ZA
RT750oCRT750oCRT750oCRT750oC
K40619404976744585712274
K4061-2Cu8994976644673617265
K4061-5Cu8804526334183612287
表3  不同Cu含量铸造K4061合金室温和750℃拉伸性能
图12  不同Cu含量下K4061合金γ'相和γ"相的Gibbs自由能
图13  Cu含量对K4061合金γ'相和γ"相临界形核尺寸的影响
1 Kudrin A A, Zuev D S, Ponomareva L L, et al. Influence of microalloying on the plasticity of KhN58MBYuD-VI nickel alloy [J]. Steel Transl., 2008, 38: 252
2 Nedashkovskii K I, Zheleznyak O N, Gromyko B M, et al. Effect of low temperatures on mechanical and physical properties of high-strength nickel alloy ÉK61-ID and stainless maraging steel Ek49-VD [J]. Met. Sci. Heat Treat., 2003, 45: 233
3 Polyanskii A M, Polyanskii V M. Structural changes in alloy ÉK-61 due to cyclic deformation at elevated temperature [J]. Met. Sci. Heat Treat., 2010, 52: 279
4 Sorokina N A, Gal'tsova V I. High-temperature ductility of nickel alloys type KhN55MBYu with a high iron content [J]. Met. Sci. Heat Treat., 1994, 36: 476
5 Huang J, Xu G H, Qin H Y, et al. Correlation between fracture morphology and microstructural evolution during long-term aging of EK61 superalloy [J]. Scanning, 2020, 2020: 1087024
6 Mignanelli P M, Jones N G, Pickering E J, et al. Gamma-gamma prime-gamma double prime dual-superlattice superalloys [J]. Scr. Mater., 2017, 136: 136
7 Alam T, Chaturvedi M, Ringer S P, et al. Precipitation and clustering in the early stages of ageing in Inconel 718 [J]. Mater. Sci. Eng., 2010, A527: 7770
8 Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718 [J]. J. Alloys Compd., 2000, 306: 277
9 Semenov V N, Akimov N V, Glushko V P. Formation of cracks in ÉP202 and ÉK61 alloys in welding of structures of liquid rocket engines [J]. Weld. Int., 2013, 27: 159
10 Monroe R W, Bates C E, Pears C D. Metal combustion in high-pressure flowing oxygen [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres [C]. West Conshohocken: ASTM, 1983: 126
11 Holt R T, Wallace W. Impurities and trace elements in nickel-base superalloys [J]. Int. Met. Rev., 1976, 21: 1
12 Davis S E. An elementary overview of the selection of materials for service in oxygen-enriched environments [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: 13th Volume [C]. West Conshohocken: ASTM, 2012: 1
13 Li Y M, Hu W, Chen Y. Effect of copper on solidification process and segregation in K4169 superalloy [J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 895
13 李亚敏, 胡 伟, 陈 毅. Cu对K4169合金凝固过程及凝固偏析的影响 [J]. 特种铸造及有色合金, 2013, 33: 895
14 Li Y M, Zhang Y Y, Zhao W, et al. First-principles study on the effect of Cu on Nb segregation in Inconel 718 alloy [J]. Acta Metall. Sin., 2022, 58: 241
doi: 10.11900/0412.1961.2020.00495
14 李亚敏, 张瑶瑶, 赵 旺 等. Cu对Inconel 718合金Nb偏析影响机理的第一性原理研究 [J]. 金属学报, 2022, 58: 241
doi: 10.11900/0412.1961.2020.00495
15 Gwalani B, Choudhuri D, Soni V, et al. Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy [J]. Acta Mater., 2017, 129: 170
16 Detrois M, Pei Z R, Rozman K A, et al. Partitioning of tramp elements Cu and Si in a Ni-based superalloy and their effect on creep properties [J]. Materialia, 2020, 13: 100843
17 He Y W. Study on the effect and mechanism of V, Cu in a new Ni-Cr-Fe-Nb superalloy [D]. Shenyang: Northeastern University, 2016
17 贺玉伟. V、Cu在新型Ni-Cr-Fe-Nb高温合金中的作用机理研究 [D]. 沈阳: 东北大学, 2016
18 Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 2011: 96
18 潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 96
19 Oblak J M, Paulonis D F, Duvall D S. Coherency strengthening in Ni base alloys hardened by DO22 γ'' precipitates [J]. Metall. Trans., 1974, 5: 143
20 Han D W, Yu L X, Liu F, et al. Effect of heat treatment on the microstructure and mechanical properties of the modified 718 alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 1224
21 Goodfellow A J. Strengthening mechanisms in polycrystalline nickel-based superalloys [J]. Mater. Sci. Technol., 2018, 34: 1793
22 Roth H A, Davis C L, Thomson R C. Modeling solid solution strengthening in nickel alloys [J]. Metall. Mater. Trans., 1997, 28A: 1329
[1] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[2] 刘光辉, 王卫国, Rohrer Gregory S, 陈松, 林燕, 童芳, 冯小铮, 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2024, 60(9): 1165-1178.
[3] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[4] 张冉, 朱士泽, 刘振宇, 柯于斌, 王东, 肖伯律, 马宗义. 时效温度对SiC/Al-Zn-Mg-Cu复合材料时效析出行为的影响[J]. 金属学报, 2024, 60(8): 1043-1054.
[5] 柯于斌, 李彬, 段辉平. 利用小角中子核磁散射分离研究AerMet100钢中纳米析出相的形貌和成分[J]. 金属学报, 2024, 60(8): 1109-1118.
[6] 朱绍祥, 王清江, 刘建荣, 陈志勇. TC19合金铸锭中ZrMo元素的宏观偏析行为[J]. 金属学报, 2024, 60(7): 869-880.
[7] 许增光, 周士祺, 李晓, 刘志权. (111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性[J]. 金属学报, 2024, 60(7): 957-967.
[8] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[9] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[10] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[11] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[12] 李龙健, 李仁庚, 张家郡, 曹兴豪, 康慧君, 王同敏. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60(3): 405-416.
[13] 蒋招汉, 邱文婷, 龚深, 李周. 轻质高强高阻尼HfO2@CNT/聚合物/CuAlMn复合材料的制备及性能[J]. 金属学报, 2024, 60(3): 287-298.
[14] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[15] 朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.