|
|
Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响 |
凡莉花, 李金临, 孙九栋, 吕梦甜, 王清( ), 董闯 |
大连理工大学 材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024 |
|
Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys |
FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing( ), DONG Chuang |
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
Lihua FAN,
Jinlin LI,
Jiudong SUN,
Mengtian LV,
Qing WANG,
Chuang DONG.
Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. Acta Metall Sin, 2024, 60(4): 453-463.
1 |
Phillips P J, Unocic R R, Mills M J. Low cycle fatigue of a polycrystalline Ni-based superalloy: Deformation substructure analysis[J]. Int. J. Fatigue, 2013, 57: 50
doi: 10.1016/j.ijfatigue.2012.11.008
|
2 |
Du B N, Yang J X, Cui C Y, et al. Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy[J]. Mater. Des., 2015, 65: 57
doi: 10.1016/j.matdes.2014.08.059
|
3 |
Chiou M S, Jian S R, Yeh A C, et al. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy[J]. Mater. Sci. Eng., 2016, A655: 237
|
4 |
Jin T, Zhou Y Z, Wang X G, et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153
doi: 10.11900/0412.1961.2015.00429
|
4 |
金 涛, 周亦胄, 王新广 等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153
|
5 |
Wang B, Zhang J, Pan X J, et al. Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2017, 53: 298
doi: 10.11900/0412.1961.2016.00379
|
5 |
王 博, 张 军, 潘雪娇 等. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53: 298
|
6 |
Van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ ′ alloys[J]. Acta Mater., 2012, 60: 1771
doi: 10.1016/j.actamat.2011.12.008
|
7 |
Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys[J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
|
8 |
Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006: 19
|
9 |
Yuan Y, Kawagishi K, Koizumi Y, et al. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800oC[J]. Mater. Sci. Eng., 2014, A608: 95
|
10 |
Jácome L A, Nörtershäuser P, Heyer J K, et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys[J]. Acta Mater., 2013, 61: 2926
doi: 10.1016/j.actamat.2013.01.052
|
11 |
Zhang Y, Wang Q, Dong H G, et al. Nickel-based single-crystal superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) designed by cluster-plus-glue-atom model and their 1000 h long-term ageing behavior at 900oC[J]. Acta Metall. Sin., 2018, 54: 591
|
11 |
张 宇, 王 清, 董红刚 等. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54: 591
|
12 |
Epishin A, Brückner U, Portella P D, et al. Influence of small rhenium additions on the lattice spacing of nickel solid solution[J]. Scr. Mater., 2003, 48: 455
doi: 10.1016/S1359-6462(02)00436-0
|
13 |
Heckl A, Neumeier S, Cenanovic S, et al. Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys[J]. Acta Mater., 2011, 59: 6563
doi: 10.1016/j.actamat.2011.07.002
|
14 |
Tian S G, Wang M G, Yu H C, et al. Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys[J]. Mater. Sci. Eng., 2010, A527: 4458
|
15 |
Kamara A B, Ardell A J, Wagner C N J. Lattice misfits in four binary Ni-Base γ /γ′ alloys at ambient and elevated temperatures[J]. Metall. Mater. Trans., 1996, 27A: 2888
|
16 |
MacKay R A, Nathal M V, Pearson D D. Influence of molybdenum on the creep properties of nickel-base superalloy single crystals[J]. Metall. Mater. Trans., 1990, 21A: 381
|
17 |
Nathal M V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys[J]. Metall. Mater. Trans., 1987, 18A: 1961
|
18 |
Pollock T M, Field R D. Dislocations and high-temperature plastic deformation of superalloy single crystals[J]. Dislocat. Solids, 2002, 11: 547
|
19 |
Liu X G, Wang L, Lou L H, et al. Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J]. J. Mater. Sci. Technol., 2015, 31: 143
doi: 10.1016/j.jmst.2013.12.019
|
20 |
Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Mater., 2005, 53: 4623
doi: 10.1016/j.actamat.2005.06.013
|
21 |
Mughrabi H. The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys[J]. Acta Mater., 2014, 81: 21
doi: 10.1016/j.actamat.2014.08.005
|
22 |
Kawagishi K, Sato A, Harada H, et al. Oxidation resistant Ru containing Ni base single crystal superalloys[J]. Mater. Sci. Technol., 2009, 25: 271
doi: 10.1179/174328408X361517
|
23 |
Kawagishi K, Yeh A C, Yokokawa T, et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238[A]. Superalloys 2012[C]. Hoboken: Wiley, 2012: 189
|
24 |
Dubiel B, Indyka P, Kalemba-Rec I, et al. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ ′ and TCP phases in single crystal Ni-base superalloy[J]. J. Alloys Compd., 2018, 731: 693
doi: 10.1016/j.jallcom.2017.10.076
|
25 |
Long H B, Mao S C, Liu Y N, et al. Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy[J]. Acta Mater., 2020, 185: 233
doi: 10.1016/j.actamat.2019.12.014
|
26 |
Liu G, Xiao X S, Véron M, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure[J]. Acta Mater., 2020, 185: 493
doi: 10.1016/j.actamat.2019.12.038
|
27 |
Joubert J M. Crystal chemistry and Calphad modeling of the σ phase[J]. Prog. Mater. Sci., 2008, 53: 528
doi: 10.1016/j.pmatsci.2007.04.001
|
28 |
Matsugi K, Murata Y, Morinaga M, et al. An electronic approach to alloy design and its application to Ni-based single-crystal superalloys[J]. Mater. Sci. Eng., 1993, A172: 101
|
29 |
Morinaga M, Yukawa H. Recent progress in molecular orbital approach to alloy design[J]. Mater. Sci. Forum, 2004, 449-452: 37
doi: 10.4028/www.scientific.net/MSF.449-452
|
30 |
Morinaga M, Yukawa N, Adachi H, et al. New PHACOMP and its applications to alloy design[A]. Superalloys 1984[C]. Warrendale, PA: TMS, 1984: 523
|
31 |
Moniruzzaman M, Murata Y, Morinaga M, et al. Alloy design of Ni-based single crystal superalloys for the combination of strength and surface stability at elevated temperatures[J]. ISIJ Int., 2003, 43: 1244
doi: 10.2355/isijinternational.43.1244
|
32 |
Harada H, Murakami H. Design of Ni-base superalloys[A]. Computational Materials Design[M]. Berlin, Heidelberg: Springer, 1999: 39
|
33 |
Yamagata T, Harada H, Nakazawa S, et al. Alloy design for high strength nickel-base single crystal alloys[A]. Superalloys 1984[C]. Warrendale, PA: TMS, 1984: 157
|
34 |
Zhang, Y, Wang Q, Dong H G, et al. High-temperature structural stabilities of Ni-based single-crystal superalloys Ni-Co-Cr-Mo-W-Al-Ti-Ta with varying Co contents[J]. Acta Metall. Sin. (Eng. Lett.), 2018, 31: 127
|
35 |
Chen C, Wang Q, Dong C, et al. Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach[J]. Sci. Rep., 2020, 10: 21621
doi: 10.1038/s41598-020-78690-8
pmid: 33303877
|
36 |
Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529
pmid: 25739749
|
37 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects[J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
|
38 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2007, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
39 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
|
40 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
|
41 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
42 |
Sun J D, Li J L, Yu H Y, et al. Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ' nanoprecipitates[J]. Mater. Sci. Eng., 2022, A833: 142550
|
43 |
Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys[J]. Acta Mater., 2013, 61: 4237
doi: 10.1016/j.actamat.2013.03.049
|
44 |
Orthacker A, Haberfehlner G, Taendl J, et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates[J]. Nat. Mater., 2018, 17: 1101
doi: 10.1038/s41563-018-0209-z
pmid: 30420670
|
45 |
Zhuang X L, Lu S, Li L F, et al. Microstructures and properties of a novel γ ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method[J]. Mater. Sci. Eng., 2020, A780: 139219
|
46 |
Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metall. Sin., 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
|
46 |
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
|
47 |
Wang W Z, Jin T, Liu J L, et al. Role of Re and Co on microstructures and γ' coarsening in single crystal superalloys[J]. Mater. Sci. Eng., 2008, A479: 148
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|