Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 453-463    DOI: 10.11900/0412.1961.2022.00064
  研究论文 本期目录 | 过刊浏览 |
Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响
凡莉花, 李金临, 孙九栋, 吕梦甜, 王清(), 董闯
大连理工大学 材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024
Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys
FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing(), DONG Chuang
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
Lihua FAN, Jinlin LI, Jiudong SUN, Mengtian LV, Qing WANG, Chuang DONG. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. Acta Metall Sin, 2024, 60(4): 453-463.

全文: PDF(4247 KB)   HTML
摘要: 

近年来,随着航空航天发动机的持续发展,对其关键热端部件的承温能力要求越来越高,而高温合金共格组织热稳定性是影响其力学性能的关键因素,本工作在团簇成分式[Al-Ni12](Al1(Ti, Nb, Ta)0.5(Cr, Mo, W)1.5)基础上,保持其他元素含量不变,改变Cr、Mo、W的含量设计了系列镍基高温合金(含Cr1.0Mo0.5的S1-CM、Cr1.0W0.5的S2-CW和含Cr0.7Mo0.4W0.4的S3-CMW),研究Cr、Mo、W含量变化对合金γ /γ′共格组织热稳定性的影响。采用非自耗真空电弧炉制备合金铸锭,并对其在1300℃固溶15 h后在900℃下进行长期时效处理,并对时效态样品进行微观组织表征和力学性能测试。结果表明,这3个合金的微观组织均表现为高体积分数(f > 70%)的γ′粒子均匀地分布在fcc-γ基体中。其中,S1-CM和S2-CW合金在900℃、50 h时效后γ′粒子形貌均呈椭球形,而S3-CMW合金则表现为方形,这是由于后者具有更负的γ /γ′点阵错配度(后者δ = -0.47%,前者δ = -0.25%~-0.33%)。500 h长期时效后,各合金中的γ′粒子形貌没有发生变化,且都具有较慢的粗化速率(K = 10~18 nm3/s);尤其S3-CMW合金表现出最高的γ /γ′共格组织稳定性(γ′粒子的粗化速率K = 10.02 nm3/s),且晶界处的第二相粒子析出明显低于其他合金。系列合金的硬度基本不随时效时间发生变化,也进一步表明了共格组织的稳定性;其中S3-CMW合金的显微硬度为397~418 HV,时效200 h后的室温压缩屈服强度为818 MPa。

关键词 镍基高温合金共格组织γ′粒子粗化第二相析出    
Abstract

In general, Ni-based superalloys exhibit high strength, good oxidation and corrosion resistance, and good creep-resistant properties at high temperatures (HTs) because of the coherent precipitation of cuboidal γ′ nanoparticles into a fcc-γ matrix induced by co-alloying of multiple elements. The present work designed a series of Ni-based superalloys based on the cluster composition formula [Al-Ni12](Al1(Ti, Nb, Ta)0.5(Cr, Mo, W)1.5), with S1-CM (Cr1.0Mo0.5), S2-CW (Cr1.0W0.5), and S3-CMW (Cr0.7Mo0.4W0.4), in which the amounts of Cr, Mo, and W were changed, whereas the contents of other elements were maintained. In addition, the effect of Cr, Mo, and W variation on the thermal stability of γ /γ′ coherent microstructure at HT in these superalloys was investigated. Alloy ingots were prepared by arc melting under an argon atmosphere, solid solutionized at 1300°C for 15 h, and then aged at 900°C for up to 500 h. Microstructural characterization and mechanical properties of these alloys in different aged states were studied by XRD, SEM, EPMA, TEM, Vickers hardness testing, and compressive testing.Result showed that all these three alloys have a high volume fraction (f > 70%) of γ′ particles uniformly distributed in the fcc-γ matrix. In particular, the γ′ particle shape is ellipsoidal in S1-CM and S2-CW alloys, whereas it is cuboidal in the S3-CMW alloy primarily because the latter has a more negative γ /γ′ lattice misfit (δ = -0.47%) than the former (δ = -0.25% to -0.33%). After aging for 500 h, the morphology of γ′ particles in each alloy has no evident change, and all of the particles have a slow coarsening rate (K = 10-18 nm3/s), in which the S3-CMW alloy exhibits the highest γ /γ′ microstructural stability (the coarsening rate of γ′ particles being K = 10.02 nm3/s). Moreover, the amount of second-phase precipitation near the grain boundaries in the S3-CMW alloy is less than that in the former two alloys. The microhardness test results showed that the microhardness of each alloy remains almost constant with aging time, thereby indicating the thermal stability of the coherent structure. In particular, the microhardness of the S3-CMW alloy is 397-418 HV, and the room-temperature compression yield strength is 818 MPa in the 200-h-aged state.

Key wordsNi-based superalloy    coherent microstructure    γ′ particle coarsening    second phase precipitation
收稿日期: 2022-02-21     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(91860108);大连市科技创新基金重点学科(研究方向)和重大课题项目(2020JJ25CY004)
通讯作者: 王 清,wangq@dlut.edu.cn,主要从事工程合金材料设计与新材料研发
Corresponding author: WANG Qing, professor, Tel: (0411)84708615, E-mail: wangq@dlut.edu.cn
作者简介: 凡莉花,女,1997年生,硕士生
AlloyCluster formula

Composition

mass fraction, %

r

nm

f

%

H

HV

aγ, aγ'

nm

δ

%

S1-CM

[Al-(Ni12)]-

(Al1(Ti, Nb, Ta)0.5(Cr1.0Mo0.5))

Ni77.23Al5.92Ta3.31Ti0.88Nb1.70-

Cr5.70Mo5.26

329 ± 4673.9 ± 3.5356 ± 5

aγ = 0.3605 ± 0.0002

aγ' = 0.3596 ± 0.0003

-0.25 ± 0.06
S2-CW

[Al-(Ni12)]-

(Al1(Ti, Nb, Ta)0.5(Cr1.0W0.5))

Ni73.68Al5.65Ta3.16Ti0.83Nb1.62-

Cr5.44W9.62

323 ± 5274.7 ± 3.9374 ± 7

aγ = 0.3603 ± 0.0002

aγ' = 0.3591 ± 0.0002

-0.33 ± 0.05
S3-CMW

[Al-(Ni12)]-

(Al1(Ti, Nb, Ta)0.5(Cr0.7Mo0.4W0.4))

Ni73.35Al5.62Ta3.14Ti0.83Nb1.61-

Cr3.79Mo4.00W7.66

288 ± 5476.1 ± 3.7397 ± 7

aγ = 0.3623 ± 0.0004

aγ' = 0.3606 ± 0.0003

-0.47 ± 0.07
表1  系列合金的团簇式和成分,900℃、500 h时效后γ′粒子尺寸(r)、γ′体积分数(f)和合金显微硬度(H),及900℃、50 h时效后γ和γ′的点阵常数(aγ 、aγ′)、γ/γ′点阵错配度(δ)
图1  由Pandat软件计算的系列合金的平衡相图
图2  S3-CMW合金在900℃时效50 h后的OM像
图3  系列合金900℃、50 h时效后的XRD谱
图4  系列合金在1300℃、15 h固溶并在900℃、50 h时效后的SEM像
图5  S1-CM和S3-CMW合金时效50 h后的TEM暗场像及选区电子衍射(SAED)花样
图6  系列合金在900℃长期时效过程中γ /γ′共格组织演变
图7  系列合金在900℃时效时γ′粒子尺寸和体积分数随时效时间的演变
图8  系列合金900℃时效500 h后晶界处微观组织的SEM像
图9  S3-CMW合金900℃时效500 h后晶界处析出相的TEM明场像及其对应的SAED花样
图10  S3-CMW合金在900℃时效500 h后晶界处的背散射电子像及元素分布图
图11  系列合金在900℃时效时显微硬度随时效时间的变化,及时效200 h的系列合金在室温下压缩的真应力-应变曲线
图12  系列合金在900℃时效过程中γ′粒子尺寸r3随时效时间t的变化
1 Phillips P J, Unocic R R, Mills M J. Low cycle fatigue of a polycrystalline Ni-based superalloy: Deformation substructure analysis[J]. Int. J. Fatigue, 2013, 57: 50
doi: 10.1016/j.ijfatigue.2012.11.008
2 Du B N, Yang J X, Cui C Y, et al. Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy[J]. Mater. Des., 2015, 65: 57
doi: 10.1016/j.matdes.2014.08.059
3 Chiou M S, Jian S R, Yeh A C, et al. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy[J]. Mater. Sci. Eng., 2016, A655: 237
4 Jin T, Zhou Y Z, Wang X G, et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153
doi: 10.11900/0412.1961.2015.00429
4 金 涛, 周亦胄, 王新广 等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153
5 Wang B, Zhang J, Pan X J, et al. Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2017, 53: 298
doi: 10.11900/0412.1961.2016.00379
5 王 博, 张 军, 潘雪娇 等. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53: 298
6 Van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ ′ alloys[J]. Acta Mater., 2012, 60: 1771
doi: 10.1016/j.actamat.2011.12.008
7 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys[J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
8 Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006: 19
9 Yuan Y, Kawagishi K, Koizumi Y, et al. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800oC[J]. Mater. Sci. Eng., 2014, A608: 95
10 Jácome L A, Nörtershäuser P, Heyer J K, et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys[J]. Acta Mater., 2013, 61: 2926
doi: 10.1016/j.actamat.2013.01.052
11 Zhang Y, Wang Q, Dong H G, et al. Nickel-based single-crystal superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) designed by cluster-plus-glue-atom model and their 1000 h long-term ageing behavior at 900oC[J]. Acta Metall. Sin., 2018, 54: 591
11 张 宇, 王 清, 董红刚 等. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54: 591
12 Epishin A, Brückner U, Portella P D, et al. Influence of small rhenium additions on the lattice spacing of nickel solid solution[J]. Scr. Mater., 2003, 48: 455
doi: 10.1016/S1359-6462(02)00436-0
13 Heckl A, Neumeier S, Cenanovic S, et al. Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys[J]. Acta Mater., 2011, 59: 6563
doi: 10.1016/j.actamat.2011.07.002
14 Tian S G, Wang M G, Yu H C, et al. Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys[J]. Mater. Sci. Eng., 2010, A527: 4458
15 Kamara A B, Ardell A J, Wagner C N J. Lattice misfits in four binary Ni-Base γ /γ′ alloys at ambient and elevated temperatures[J]. Metall. Mater. Trans., 1996, 27A: 2888
16 MacKay R A, Nathal M V, Pearson D D. Influence of molybdenum on the creep properties of nickel-base superalloy single crystals[J]. Metall. Mater. Trans., 1990, 21A: 381
17 Nathal M V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys[J]. Metall. Mater. Trans., 1987, 18A: 1961
18 Pollock T M, Field R D. Dislocations and high-temperature plastic deformation of superalloy single crystals[J]. Dislocat. Solids, 2002, 11: 547
19 Liu X G, Wang L, Lou L H, et al. Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J]. J. Mater. Sci. Technol., 2015, 31: 143
doi: 10.1016/j.jmst.2013.12.019
20 Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Mater., 2005, 53: 4623
doi: 10.1016/j.actamat.2005.06.013
21 Mughrabi H. The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys[J]. Acta Mater., 2014, 81: 21
doi: 10.1016/j.actamat.2014.08.005
22 Kawagishi K, Sato A, Harada H, et al. Oxidation resistant Ru containing Ni base single crystal superalloys[J]. Mater. Sci. Technol., 2009, 25: 271
doi: 10.1179/174328408X361517
23 Kawagishi K, Yeh A C, Yokokawa T, et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238[A]. Superalloys 2012[C]. Hoboken: Wiley, 2012: 189
24 Dubiel B, Indyka P, Kalemba-Rec I, et al. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ ′ and TCP phases in single crystal Ni-base superalloy[J]. J. Alloys Compd., 2018, 731: 693
doi: 10.1016/j.jallcom.2017.10.076
25 Long H B, Mao S C, Liu Y N, et al. Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy[J]. Acta Mater., 2020, 185: 233
doi: 10.1016/j.actamat.2019.12.014
26 Liu G, Xiao X S, Véron M, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure[J]. Acta Mater., 2020, 185: 493
doi: 10.1016/j.actamat.2019.12.038
27 Joubert J M. Crystal chemistry and Calphad modeling of the σ phase[J]. Prog. Mater. Sci., 2008, 53: 528
doi: 10.1016/j.pmatsci.2007.04.001
28 Matsugi K, Murata Y, Morinaga M, et al. An electronic approach to alloy design and its application to Ni-based single-crystal superalloys[J]. Mater. Sci. Eng., 1993, A172: 101
29 Morinaga M, Yukawa H. Recent progress in molecular orbital approach to alloy design[J]. Mater. Sci. Forum, 2004, 449-452: 37
doi: 10.4028/www.scientific.net/MSF.449-452
30 Morinaga M, Yukawa N, Adachi H, et al. New PHACOMP and its applications to alloy design[A]. Superalloys 1984[C]. Warrendale, PA: TMS, 1984: 523
31 Moniruzzaman M, Murata Y, Morinaga M, et al. Alloy design of Ni-based single crystal superalloys for the combination of strength and surface stability at elevated temperatures[J]. ISIJ Int., 2003, 43: 1244
doi: 10.2355/isijinternational.43.1244
32 Harada H, Murakami H. Design of Ni-base superalloys[A]. Computational Materials Design[M]. Berlin, Heidelberg: Springer, 1999: 39
33 Yamagata T, Harada H, Nakazawa S, et al. Alloy design for high strength nickel-base single crystal alloys[A]. Superalloys 1984[C]. Warrendale, PA: TMS, 1984: 157
34 Zhang, Y, Wang Q, Dong H G, et al. High-temperature structural stabilities of Ni-based single-crystal superalloys Ni-Co-Cr-Mo-W-Al-Ti-Ta with varying Co contents[J]. Acta Metall. Sin. (Eng. Lett.), 2018, 31: 127
35 Chen C, Wang Q, Dong C, et al. Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach[J]. Sci. Rep., 2020, 10: 21621
doi: 10.1038/s41598-020-78690-8 pmid: 33303877
36 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529 pmid: 25739749
37 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects[J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
38 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2007, 122: 448
doi: 10.1016/j.actamat.2016.08.081
39 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
40 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
41 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
42 Sun J D, Li J L, Yu H Y, et al. Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ' nanoprecipitates[J]. Mater. Sci. Eng., 2022, A833: 142550
43 Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys[J]. Acta Mater., 2013, 61: 4237
doi: 10.1016/j.actamat.2013.03.049
44 Orthacker A, Haberfehlner G, Taendl J, et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates[J]. Nat. Mater., 2018, 17: 1101
doi: 10.1038/s41563-018-0209-z pmid: 30420670
45 Zhuang X L, Lu S, Li L F, et al. Microstructures and properties of a novel γ ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method[J]. Mater. Sci. Eng., 2020, A780: 139219
46 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metall. Sin., 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
46 高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
47 Wang W Z, Jin T, Liu J L, et al. Role of Re and Co on microstructures and γ' coarsening in single crystal superalloys[J]. Mater. Sci. Eng., 2008, A479: 148
[1] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[8] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[9] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[10] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[11] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[12] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[13] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[14] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] 任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.