Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 287-298    DOI: 10.11900/0412.1961.2022.00210
  研究论文 本期目录 | 过刊浏览 |
轻质高强高阻尼HfO2@CNT/聚合物/CuAlMn复合材料的制备及性能
蒋招汉1, 邱文婷1, 龚深1,2(), 李周1,2
1中南大学 材料科学与工程学院 长沙 410083
2中南大学 粉末冶金国家重点实验室 长沙 410083
Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping
JIANG Zhaohan1, QIU Wenting1, GONG Shen1,2(), LI Zhou1,2
1School of Materials Science and Engineering, Central South University, Changsha 410083, China
2State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

蒋招汉, 邱文婷, 龚深, 李周. 轻质高强高阻尼HfO2@CNT/聚合物/CuAlMn复合材料的制备及性能[J]. 金属学报, 2024, 60(3): 287-298.
Zhaohan JIANG, Wenting QIU, Shen GONG, Zhou LI. Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping[J]. Acta Metall Sin, 2024, 60(3): 287-298.

全文: PDF(3213 KB)   HTML
摘要: 

由于阻尼合金和聚合物分别在减振效果和力学性能方面存在不足,为了实现宽频域和温域内的功能结构一体化,本工作采用烧结蒸发法和真空渗入工艺成功制备了一种新型阻尼复合材料。该复合材料以多孔CuAlMn形状记忆合金为骨架,孔隙中填充了负载HfO2颗粒的碳纳米管与黏弹性聚合物组成的复合体。对样品进行了动态力学分析和室温单轴压缩实验,结果表明,当骨架孔隙率为80%、碳纳米管质量分数为1%时,该复合材料的压缩屈服强度和弹性模量分别为27 MPa和1040 MPa,密度仅为2.11 g/cm3,损耗因子在0.1~200 Hz和20~100℃范围内都在0.055以上,最大值可达0.102。相比于同等孔隙率的CuAlMn骨架,复合材料的弹性模量、压缩屈服强度和损耗因子分别提高了1、2和1.5倍。引入三相模型研究了复合材料的阻尼机理,计算结果表明,新型复合材料的主要阻尼机制是界面阻尼。

关键词 阻尼复合材料多孔CuAlMn形状记忆合金HfO2碳纳米管聚合物界面阻尼    
Abstract

With the development of industry, people pay more and more attention to the hazards of vibration and noise in various fields. Besides adopting various vibration-reduction technologies, the demand for high-performance damping materials is also increasing to reduce vibration and noise. Among them, damping composites combine the advantages of different damping materials and superimpose multiple mechanisms to integrate their functions and structures, obtaining damping materials with excellent comprehensive performance. Herein, a novel damping composite was prepared using the sintering evaporation method and vacuum infiltration. This composite adopts the porous CuAlMn shape memory alloy as the skeleton, whose pores are filled with a composite composed of carbon nanotubes loaded with HfO2 particles and a viscoelastic polymer. Uniaxial compression test at room temperature and dynamic mechanical analysis were carried out on composite samples. The results show that when porosity of the skeleton is 80% and the mass fraction of carbon nanotubes is 1%, the compressive yield strength and elastic modulus of the composite are 27 MPa and 1040 MPa, respectively, and its density is only 2.11 g/cm3. Its loss factor is > 0.055 in the range of 0.1-200 Hz and 20-100oC, and its maximum value can reach 0.102. The elastic modulus, compressive yield strength, and loss factor of this composite increased by 1, 2, and 1.5 times, respectively, compared to those of the CuAlMn skeleton with same porosity. A three-phase model was utilized to analyze the damping mechanism of composite samples. The calculation results show that the primary damping mechanism of the proposed novel composite is interface damping.

Key wordsdamping composite    porous CuAlMn shape memory alloy    HfO2    carbon nanotube    polymer    interface damping
收稿日期: 2022-05-05     
ZTFLH:  TB333  
基金资助:国家重点研发计划项目(2021YFB3501003);国家自然科学基金项目(52271125);装备预研领域基金项目(61402100105)
通讯作者: 龚 深,gongshen011@csu.edu.cn,主要从事纳米功能(智能)材料和高性能铜合金及复合材料等研究
Corresponding author: GONG Shen, professor, Tel: 13786289378, E-mail: gongshen011@csu.edu.cn
作者简介: 蒋招汉,男,1996年生,博士生
图1  HfO2@CNT/聚合物/CuAlMn复合材料的制备流程示意图(CNT代表碳纳米管)
Simplified representationAlloy skeletonPolymer matrixCarbon nanomaterials dispersed in polymer
Porous CuAlMn SMACuAlMn
Polymer/CuAlMnCuAlMnEP/PU
CNF/polymer/CuAlMnCuAlMnEP/PUCNFs
CNT/polymer/CuAlMnCuAlMnEP/PUCNTs
HfO2@CNT/polymer/CuAlMnCuAlMnEP/PUHfO2@CNTs
表1  材料的简称和具体组成
图2  淬火态多孔CuAlMn SMA和聚合物/CuAlMn复合材料的SEM像,淬火态多孔CuAlMn SMA的室温XRD谱,远离孔隙、孔隙边缘以及典型孪晶马氏体的TEM像,及I区域的HRTEM像和选区电子衍射花样
图3  碳纳米纤维(CNFs)、CNTs和HfO2@CNTs的TEM像;CNTs和HfO2@CNTs的室温XRD谱;HfO2@CNTs的STEM像、STEM-HAADF像和EDS扫描结果;CNF/聚合物/CuAlMn、CNT/聚合物/CuAlMn和HfO2@CNT/聚合物/CuAlMn复合材料的SEM像
图4  5种材料的损耗因子和储能模量室温下随频率变化曲线和100 Hz下随温度变化曲线;多孔CuAlMn SMA、CNT/聚合物/CuAlMn和HfO2@CNT/聚合物/CuAlMn复合材料的损耗因子和储能模量在1、10和100 Hz下随温度的变化曲线;5种材料室温下的压缩应力-应变曲线
Sample

Density

g·cm-3

Yield strength

MPa

Elastic modulus

MPa

Loss factor (25oC, 200 Hz)
Porous CuAlMn SMA1.4396420.058
Polymer/CuAlMn1.98248620.067
CNF/polymer/CuAlMn2.063010290.068
CNT/polymer/CuAlMn2.05269070.088
HfO2@CNT/polymer/CuAlMn2.112710400.102
表2  5种材料的综合性能数据
图5  5种材料的阻尼性能(室温,低频振动)和密度与各种常用合金[23,28,29]的比较
图6  三相模型示意图
ParameterSymbolRef.Sim. value
Elastic modulus of CuAlMn SMAECuAlMn[32]20 GPa
Elastic modulus of polymerEm[32]127 MPa
Elastic moduli of CNFs, CNTs, and HfO2@CNTsEf[41,42]1000 GPa
Radius of HfO2 nanoparticles1 nm
Radii of CNFs and CNTsrf[43]75 nm, 7.5 nm
Lengths of CNFs and CNTslf[43]15 μm, 1.5 μm
Volume ratio of HfO2 nanoparticles to CNTs30%
Loss factor of CuAlMn SMAηCuAlMn[23]0.0094
Loss factor of polymerηm[32]0.0662
Loss factors of CNFs, CNTs, and HfO2@CNTsηf[40,44-46]0.0018
Loss factor of macroscopic and microscopic interface transition zoneηi[47-49]0.50
表3  材料的物理参数[23,32,40~49]
SampleTotal interface area (relative value)Experimental value of loss factorCalculated value of loss factor
Porous CuAlMn SMA1.00.04220.0436
Polymer/CuAlMn1.00.05920.0590
CNF/polymer/CuAlMn18.30.05770.0611
CNT/polymer/CuAlMn172.20.07820.0807
HfO2@CNT/polymer/CuAlMn265.70.08770.0896
表4  5种材料的界面总面积、损耗因子的实验值和计算值
SampleCuAlMn SMAMacroscopic interfacePolymerMicroscopic interfaceFiller
Porous CuAlMn SMA23.0476.96---
Polymer/CuAlMn13.9077.788.32--
CNF/polymer/CuAlMn13.0272.275.188.401.13
CNT/polymer/CuAlMn9.6745.295.1338.861.05
HfO2@CNT/polymer/CuAlMn7.6040.094.5846.870.86
表5  5种材料中各个阻尼项的应变能损耗占比 (%)
1 Zhang R D, Zhao J L. Damping material of reducing vibration and noise and its application [J]. Shanghai Met., 2002, 24(2): 18
1 张人德, 赵钧良. 减振降噪阻尼材料及其应用 [J]. 上海金属, 2002, 24(2): 18
2 Liu R, Sun H L, Liu X L, et al. Effect of Gd on microstructure, mechanical properties and damping properties of Fe-Cr-Al alloys [J]. Mater. Charact., 2022, 187: 111841
doi: 10.1016/j.matchar.2022.111841
3 Li Z Z, Yan H G, Chen J H, et al. Enhancing damping capacity and mechanical properties of Al-Mg alloy by high strain rate hot rolling and subsequent cold rolling [J]. J. Alloys Compd., 2022, 908: 164677
doi: 10.1016/j.jallcom.2022.164677
4 Wang S H, Li J, Chai F, et al. Influence of solution temperature on γε transformation and damping capacity of Fe-19Mn Alloy [J]. Acta Metall. Sin., 2020, 56: 1217
4 王世宏, 李 健, 柴 锋 等. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响 [J]. 金属学报, 2020, 56: 1217
doi: 10.11900/0412.1961.2020.00005
5 Hufenus R, Gottardo L, Leal A A, et al. Melt-spun polymer fibers with liquid core exhibit enhanced mechanical damping [J]. Mater. Des., 2016, 110: 685
doi: 10.1016/j.matdes.2016.08.042
6 Xu Z P, Ha C S, Kadam R, et al. Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices [J]. Addit. Manuf., 2020, 32: 101106
7 Feng Q, Shen M L, Zhu J M, et al. Realization of polyurethane/epoxy interpenetrating polymer networks with a broad high-damping temperature range using β-cyclodextrins as chain extenders [J]. Mater. Des., 2021, 212: 110208
doi: 10.1016/j.matdes.2021.110208
8 Wang Y B, Jiang H J, Liu C Y, et al. Influence of Al particle layer on damping behavior of Alp/7075Al composites fabricated by hot rolling [J]. J. Alloys Compd., 2021, 882: 160763
doi: 10.1016/j.jallcom.2021.160763
9 Jiao Z X, Wang Q Z, Yin F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties [J]. Carbon, 2022, 188: 45
doi: 10.1016/j.carbon.2021.11.055
10 Yao Y T, Chen L Q, Wang W G. Damping capacities of (B4C+Ti) hybrid reinforced Mg and AZ91D composites processed by in situ reactive infiltration technique [J]. Acta. Metall. Sin., 2019, 55: 141
10 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能 [J]. 金属学报, 2019, 55: 141
doi: 10.11900/0412.1961.2018.00108
11 Feng Z X, Han F, Feng M, et al. Effects of constrained layer damping patches on the sound insulation characteristics of aircraft panels [J]. Noise Vibrat. Control, 2016, 36(3): 76
11 冯梓鑫, 韩 峰, 冯 盟 等. 约束层阻尼对飞机壁板隔声特性的影响 [J]. 噪声与振动控制, 2016, 36(3): 76
doi: 10.3969/j.issn.1006-1335.2016.03.016
12 Wang Y, Liu Z M, Li S Q, et al. Vibration temperature-increase research of viscoelastic material applied on constrained damping vibration isolator [J]. J. Vib. Eng., 2010, 23: 585
12 王 跃, 刘志敏, 李世其 等. 约束阻尼型隔振器粘弹材料振动温升研究 [J]. 振动工程学报, 2010, 23: 585
13 Wang G Q. Vibration and noise reduction research on ocean engineering bulkhead structure [D]. Qingdao: Ocean University of China, 2013
13 王国庆. 海洋工程舱壁结构减振降噪问题研究 [D]. 青岛: 中国海洋大学, 2013
14 Sil A, Sharma R, Ray S. Mechanical and thermal characteristics of PMMA-based nanocomposite gel polymer electrolytes with CNFs dispersion [J]. Surf. Coat. Technol., 2015, 271: 201
doi: 10.1016/j.surfcoat.2014.12.036
15 Toyoda N, Yamamoto T. Dispersion of carbon nanofibers modified with polymer colloids to enhance mechanical properties of PVA nanocomposite film [J]. Colloids Surf., 2018, 556A: 248
16 Mlyniec A, Korta J, Kudelski R, et al. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites [J]. Compos. Struct., 2014, 118: 208
doi: 10.1016/j.compstruct.2014.07.047
17 Ma M. Preparation and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT as rigid piezo-damping materials [D]. Beijing: Beijing University of Chemical Technology, 2009
17 马 敏. 碳纳米管/铌镁锆钛酸铅/环氧树脂基压电阻尼材料的制备及性能研究 [D]. 北京: 北京化工大学, 2009
18 Xu P, Yang K, Yu Y H. Research on damping property of foam aluminum-epoxy resin composite [J]. Hot Work. Technol., 2013, 42: 110
18 徐 平, 杨 昆, 于英华. 泡沫铝/环氧树脂复合材料阻尼性能的研究 [J]. 热加工工艺, 2013, 42: 110
19 Chen M, Jiang H, Wang Y R, et al. Study on the effect of metallic foam on the sound absorption properties of phononic glass [A]. 14th Symposium on Underwater Noise of Ships [C]. 2013-08-22, Chongqing, China Ship Science Research Center, 2013: 553
19 陈 猛, 姜 恒, 王育人 等. 泡沫金属对声子玻璃吸声性能的影响研究 [A]. 第十四届船舶水下噪声学讨论会 [C]. 2013-08-22, 重庆, 2013: 553
20 Gong S, Li Z, Xu G Y, et al. Fabrication, microstructure and property of cellular CuAlMn shape memory alloys produced by sintering-evaporation process [J]. J. Alloys Compd., 2011, 509: 2924
doi: 10.1016/j.jallcom.2010.11.157
21 Wang C, Jia J R. Damping and mechanical properties of polyol cross-linked polyurethane/epoxy interpenetrating polymer networks [J]. High Perform. Polym., 2014, 26: 240
doi: 10.1177/0954008313508421
22 Li Z, Wang M P, Xu G Y, et al. The martensite structure and its variation during aging in Cu-Al-Mn alloy [J]. Trans. Mater. Heat Treat., 2002, 23(2): 16
22 李 周, 汪明朴, 徐根应 等. Cu-Al-Mn合金马氏体结构及其在时效过程中的变化 [J]. 材料热处理学报, 2002, 23(2): 16
23 Wang Q Z, Han F S, Wu J, et al. Damping behavior of porous CuAlMn shape memory alloy [J]. Mater. Lett., 2007, 61: 2598
doi: 10.1016/j.matlet.2006.10.007
24 Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535
doi: 10.1016/j.actamat.2009.12.040
25 Bertrand E, Castany P, Gloriant T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy [J]. Acta Mater., 2013, 61: 511
doi: 10.1016/j.actamat.2012.09.065
26 Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications [J]. Mater. Des., 2016, 108: 136
doi: 10.1016/j.matdes.2016.06.080
27 Ji X W, Wang Q Z, Yin F X, et al. Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites [J]. Composites, 2018, 107A: 21
28 Brandes E A, Brook G. Smithells Metals Reference Book [M]. Oxford Boston: Butterworth-Heinemann, 2013: 15
29 Zhang J, Perez R J, Lavernia E J. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials [J]. J. Mater. Sci., 1993, 28: 2395
doi: 10.1007/BF01151671
30 San Juan J, Nó M L. Damping behavior during martensitic transformation in shape memory alloys [J]. J. Alloys Compd., 2003, 355: 65
doi: 10.1016/S0925-8388(03)00277-9
31 Zheng X H, Ning R, Duan J T, et al. Martensitic transformation and damping behavior of Ti70 - x Ta15Zr15Fe x (x = 0.3, 0.6, 1.0) shape memory thin films [J]. Acta Metall. Sin., 2020, 56: 1690
31 郑晓航, 宁 睿, 段佳彤 等. Ti70 - x Ta15Zr15Fe x (x = 0.3, 0.6, 1.0)形状记忆合金薄膜的马氏体相变与阻尼行为 [J]. 金属学报, 2020, 56: 1690
doi: 10.11900/0412.1961.2020.00155
32 Jiang Z H, Cai H Y, Chen X L, et al. Improving the mechanical and damping properties of polymer/memory alloy composite by introducing nanotubes covered with nano-scale Ni particles [J]. Composites, 2022, 156A: 106856
33 Ajayan P M, Suhr J, Koratkar N. Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping [J]. J. Mater. Sci., 2006, 41: 7824
doi: 10.1007/s10853-006-0693-4
34 Mahmoodi M J, Vakilifard M. Interfacial effects on the damping properties of general carbon nanofiber reinforced nanocomposites—A multi-stage micromechanical analysis [J]. Compos. Struct., 2018, 192: 397
doi: 10.1016/j.compstruct.2018.03.012
35 Yan N J. Structure and properties of the porous CuAlMn shape memory alloys [D]. Tianjin: Hebei University of Technology, 2013
35 闫娜君. 多孔CuAlMn形状记忆合金的结构、性能研究 [D]. 天津: 河北工业大学, 2013
36 Li D S, Zhang X P, Xiong Z P, et al. Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength [J]. J. Alloys Compd., 2010, 490: L15
doi: 10.1016/j.jallcom.2009.10.025
37 Papanicolaou G C, Paipetis S A, Theocaris P S. The concept of boundary interphase in composite mechanics [J]. Colloid. Polym. Sci., 1978, 256: 625
doi: 10.1007/BF01784402
38 Theocaris P S, Papanicolaou G C. The effect of the boundary interphase on the thermomechanical behaviour of composites reinforced with short fibres [J]. Fibre Sci. Technol., 1979, 12: 421
doi: 10.1016/0015-0568(79)90016-2
39 Drzal L. Composite interphase characterization [J]. SAMPE J., 1983, 19: 7
40 Chaturvedi S K, Tzeng G Y. Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites [J]. Compos. Eng., 1991, 1: 49
doi: 10.1016/0961-9526(91)90025-N
41 Bao W X, Zhu C C, Cui W Z. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics [J]. Physics, 2004, 352B: 156
42 Scarpa F, Adhikari S, Phani A S. Effective elastic mechanical properties of single layer graphene sheets [J]. Nanotechnology, 2009, 20: 065709
43 Jiang Z H, Wang F M J, Yin J L, et al. Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites [J]. Composites, 2020, 199B: 108266
44 Li B, Wei Y L, Meng F C, et al. Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators [J]. Superlatt. Microstruct., 2020, 139: 106420
doi: 10.1016/j.spmi.2020.106420
45 Sazonova V, Yaish Y, Üstünel H, et al. A tunable carbon nanotube electromechanical oscillator [J]. Nature, 2004, 431: 284
doi: 10.1038/nature02905
46 Qian D, Zhou Z. Visco-elastic properties of carbon nanotubes and their relation to damping [A]. Time Dependent Constitutive Behavior and Fracture/Failure Processes, Vol.3 [M]. New York: Springer, 2011: 259
47 Patel R K, Bhattacharya B, Basu S. Effect of interphase properties on the damping response of polymer nano-composites [J]. Mech. Res. Commun., 2008, 35: 115
doi: 10.1016/j.mechrescom.2007.08.005
48 Wang K F, Okuno K, Banu M, et al. Vibration-based identification of interphase properties in long fiber reinforced composites [J]. Compos. Struct., 2017, 174: 244
doi: 10.1016/j.compstruct.2017.04.018
49 Pathan M V, Tagarielli V L, Patsias S. Effect of fibre shape and interphase on the anisotropic viscoelastic response of fibre composites [J]. Compos. Struct., 2017, 162: 156
doi: 10.1016/j.compstruct.2016.11.046
50 Vantomme J. A parametric study of material damping in fibre-reinforced plastics [J]. Composites, 1995, 26: 147
doi: 10.1016/0010-4361(95)90415-V
[1] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[2] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[3] 吉忠海, 张莉莉, 汤代明, 刘畅, 成会明. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1665-1682.
[4] 赵越,洪波,范楼珍. 电沉积制备PtRu/MWCNTs和PtRuNi/MWCNTs及其在直接甲醇燃料电池中的性能[J]. 金属学报, 2013, 49(6): 699-706.
[5] 许世娇 肖伯律 刘振宇 王文广 马宗义. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7): 882-888.
[6] 谈军 周张健 刘亚勤 屈丹丹 钟铭 葛昌纯. 碳纳米管对W显微组织结构及其性能的影响[J]. 金属学报, 2011, 47(12): 1555-1560.
[7] 张以河; 付绍云; 黄传军; 李来风; 李广涛; 严庆 . 热固性聚合物基纳米复合材料的研究进展[J]. 金属学报, 2004, 40(8): 0-840 .
[8] 姜训勇; 高学平; 宋德瑛 . 普通渗碳剂与新型高聚物渗碳剂进行NiTi合金固体渗碳的对比[J]. 金属学报, 2003, 39(9): 962-966 .