Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1165-1178    DOI: 10.11900/0412.1961.2023.00170
  研究论文 本期目录 | 过刊浏览 |
高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界
刘光辉1, 王卫国1,2(), Rohrer Gregory S3, 陈松1,2, 林燕1,2, 童芳1, 冯小铮1, 周邦新4
1.福建理工大学 晶界工程研究所 福州 350118
2.福建理工大学 材料科学与工程学院 福州 350118
3.Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213 -3890, USA
4.上海大学 材料研究所 上海 200072
{111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature
LIU Guanghui1, WANG Weiguo1,2(), Rohrer Gregory S3, CHEN Song1,2, LIN Yan1,2, TONG Fang1, FENG Xiaozheng1, ZHOU Bangxin4
1.Institute of Grain Boundary Engineering, Fujian University of Technology, Fuzhou 350118, China
2.School of Materials Science and Technology, Fujian University of Technology, Fuzhou 350118, China
3.Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213 -3890, USA
4.Institute of Materials, Shanghai University, Shanghai 200072, China
引用本文:

刘光辉, 王卫国, Rohrer Gregory S, 陈松, 林燕, 童芳, 冯小铮, 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2024, 60(9): 1165-1178.
Guanghui LIU, Weiguo WANG, Gregory S Rohrer, Song CHEN, Yan LIN, Fang TONG, Xiaozheng FENG, Bangxin ZHOU. {111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature[J]. Acta Metall Sin, 2024, 60(9): 1165-1178.

全文: PDF(6917 KB)   HTML
摘要: 

提高{111}/{111}近奇异晶界比例可增强Al-Zn-Mg-Cu合金晶界腐蚀抗力,为了解此类晶界形成机理并探索其调控方法,本工作将470℃、12 h和520℃、6 h双级固溶及冷轧后再结晶的Al-Zn-Mg-Cu合金样品分别在450、480和520℃进行应变速率为0.001 s-1、真应变为1.20的压缩变形,压缩后立即水冷。采用电子背散射衍射和基于五参数分析的晶界界面匹配定量表征方法对上述3个样品的显微组织和晶界特征分布进行观察分析。结果表明,高温压缩后的显微组织不均匀,存在间隔分明的细晶组织和粗晶组织,其中细晶组织中的晶界以小角度晶界(LAGB)为主,粗晶组织中的晶界以大角度晶界(HAGB)为主;粗、细晶组织中的{111}/{111}近奇异晶界({111}/{111}-NSB)比例均随压缩温度的升高而增大,其中经520℃压缩的试样,其LAGB中的{111}/{111}-NSB占总晶界的比例为8.77%,HAGB中的{111}/{111}-NSB占总晶界的比例为4.53%。进一步考察各试样的应力-应变曲线以及450℃压缩30%时的显微组织特征可见,应变介于0.05~0.70为稳态流变阶段,主要发生初次动态再结晶(DRX),其主要由粗晶及其HAGB构成。应变介于0.70~1.20为二次硬化阶段,主要发生二次DRX,其中不连续DRX (DDRX)和连续DRX (CDRX)同时进行,且优先发生在某些微区;不论是DDRX因形核和核心长大生成的HAGB,还是CDRX因亚晶合并引入的LAGB,均使对应微区的晶粒细化,导致样品总体流变应力急剧上升。二次DRX阶段,CDRX行为随压缩温度的提高而增强,{111}/{111}-NSB比例也随之增加,特别是LAGB中的{111}/{111}-NSB比例快速增加。

关键词 Al-Zn-Mg-Cu合金近奇异晶界晶界界面匹配连续动态再结晶    
Abstract

Increasing the fraction of {111}/{111} near-singular boundaries ({111}/{111}-NSBs) has been reported as a primary solution to intergranular corrosion failure in Al-Zn-Mg-Cu alloys. The authors' previous work demonstrates that continuous static recrystallization resulting from a specific prestrain and annealing is conducive to the formation of {111}/{111}-NSBs in Al-Zn-Mg-Cu alloys. Therefore, the development of such boundaries in the alloys during dynamic recrystallization (DRX), particularly during discontinuous DRX (DDRX) and continuous DRX (CDRX) at elevated temperatures, should be elucidated. In the present work, an Al-Zn-Mg-Cu alloy containing 7.79%Zn, 1.53%Mg, and 1.68%Cu (mass fraction) was selected as the experimental material. A hot-rolled plate of the alloy was subjected to a two-stage solution treatment at 470oC for 12 h and 520oC for 6 h followed by cold rolling and recrystallization annealing. Three parallel samples cut from the recrystallized plate were compressed at 450, 480, and 520oC at a strain rate of 0.001 s-1 to a true strain of 1.20. The samples were water quenched immediately after the compression. Electron backscatter diffraction and grain boundary inter-connection measurement based on five-parameter analysis were performed to examine the microstructures and grain boundary character distributions of the compressed samples. The results indicate that the microstructures of the samples were uneven, exhibiting fine- and coarse-grained regions. Low-angle grain boundaries are dominant in the fine-grained regions, whereas high-angle grain boundaries are dominant in the coarse-grained regions. The fraction of {111}/{111}-NSBs increases with the compression temperature in fine- and coarse-grained regions. In the sample compressed at 520oC, the {111}/{111}-NSBs from the low-angle grain boundaries constitute 8.77% of all grain boundaries, while those from the high-angle grain boundaries constitute 4.53%. The stress-strain curves and the microstructures of the sample compressed at 450oC to a true strain of 0.36 show that primary DRX occurs at strains from 0.05 to 0.70. Furthermore, the coarse-grained microstructures and high-angle grain boundaries develop during the stage involving steady-state flow. When the strain increases from 0.70 to 1.20, secondary DRX (including DDRX and CDRX) occurs in some regions, leading to dramatic grain refinement and a sharp increase in flow stress. In this stage, CDRX intensifies with increasing compression temperature, and {111}/{111}-NSBs in the low-angle grain boundaries increase rapidly.

Key wordsAl-Zn-Mg-Cu alloy    near singular boundary    grain boundary inter-connection    continuous dynamic recrystallization
收稿日期: 2023-04-17     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(51971063,52271027)
通讯作者: 王卫国,wang_weiguo@vip.163.com,主要从事金属和无机非金属材料晶界工程研究
Corresponding author: WANG Weiguo, professor, Tel: (0591)22863515, E-mail: wang_weiguo@vip.163.com
作者简介: 刘光辉,男,1995年生,硕士生
图1  分别经450、480和520℃压缩的A~C样品的取向成像显微(OIM)像、晶界网络(GBN)图以及局部细晶组织放大图
图2  A~C样品重构出的晶界取向差分布(MD)图
SampleRotation axisNBLF / %NF / %
A<001>13402.502.52
<011>34505.726.49
<012>559310.2010.52
<013>53329.9610.03
<111>25944.924.88
<112>644312.0712.12
<113>554510.5910.43
<122>743214.1013.98
B<001>13492.402.44
<011>33856.076.12
<012>562010.0810.16
<013>563610.2410.19
<111>28045.035.07
<112>668212.2812.08
<113>584610.5810.57
<122>771014.0413.94
C<001>13712.732.60
<011>33166.306.29
<012>548410.2110.40
<013>52999.9910.05
<111>25734.794.88
<112>630612.0611.96
<113>550510.5910.44
<122>731813.8313.88
表1  A~C样品经8个低Miller指数旋转轴过滤出的晶界数量及其比例统计
图3  A~C样品具有特定旋转轴晶界的MD图
图4  C样品小角度晶界(LAGB)中存在{111}/{111}近奇异晶界({111}/{111}-NSB)的各组晶界五参数晶界面分布图(投影在(001)内)
图5  C样品大角度晶界(HAGB)中存在{111}/{111}-NSB的各组晶界五参数晶界面分布图(投影在(001)内)
图6  C样品中存在{111}/{111}-NSB的2组晶界的加权平均取向差Gauss分布曲线
Sample

Misorientation

<uvw>/θ

Pi

%

Mi

Wi

(°)

Fi

%

F

%

A<012>/5°1.161.901.700.624.18
<013>/5°1.111.642.010.58
<111>/5°0.421.862.130.22
<111>/10°0.711.852.090.37
<113>/10°2.131.321.831.11
<122>/10°2.491.372.111.28
B<011>/5°0.661.691.940.354.87
<011>/10°1.111.432.000.58
<112>/5°1.331.552.170.69
<013>/5°1.311.301.780.68
<111>/5°0.441.851.820.23
<111>/10°0.731.612.290.38
<122>/5°1.401.441.980.72
<122>/10°2.391.572.121.24
C<001>/10°0.591.521.850.318.77
<011>/5°0.541.591.690.29
<011>/10°1.092.331.800.59
<012>/5°1.181.512.010.61
<012>/10°2.141.531.901.11
<013>/5°1.251.312.260.64
<013>/10°2.181.342.081.12
<111>/10°0.711.741.800.37
<112>/5°1.411.341.840.73
<112>/10°2.231.492.101.15
<122>/5°1.202.011.400.65
<122>/10°2.321.482.021.20
表2  A~C样品LAGB中的{111}/{111}-NSB定量计算
图7  A~C样品中LAGB和HAGB中的{111}/{111}-NSB比例
Sample

Misorientation

<uvw>/θ

Pi

%

Mi

Wi

(°)

Fi

%

F

%

A<111>/15°0.472.272.250.252.54
<111>/20°0.341.981.790.18
<111>/35°0.342.061.650.19
<111>/40°0.301.322.050.16
<111>/45°0.411.401.770.21
<112>/20°1.041.421.880.54
<122>/20°0.961.572.050.50
<122>/40°0.991.242.150.51
B<111>/25°0.322.402.330.173.69
<111>/30°0.271.551.440.14
<111>/35°0.331.741.870.17
<111>/40°0.361.531.570.19
<111>/50°0.871.451.890.23
<111>/55°0.522.352.070.28
<112>/15°1.601.302.010.84
<1 2>/25°0.841.222.060.43
<112>/30°0.721.622.070.37
<122>/35°0.771.252.060.39
<122>/40°0.931.462.020.48
C<111>/20°0.302.301.960.164.53
<111>/25°0.282.091.720.15
<111>/45°0.421.721.950.22
<111>/50°0.492.221.730.26
<111>/60°0.361.882.170.19
<112>/15°1.441.252.070.74
<112>/20°0.971.292.090.50
<112>/25°0.791.362.070.41
<122>/15°1.201.352.040.62
<122>/25°0.711.361.870.37
<122>/30°0.921.361.740.48
<122>/35°0.821.511.910.43
表3  A~C样品HAGB中的{111}/{111}-NSB定量计算
图8  A~C样品的载荷-位移曲线和应力-应变曲线
图9  经450℃、应变速率0.001 s-1和应变0.36压缩变形Al-Zn-Mg-Cu合金压缩面与横切面的OIM像与GBN图
图10  A~C样品细晶区的局域平均取向差分布(KAM)图
图11  A~C样品中HAGB和不同旋转角LAGB的空间分布GBN图
图12  A~C样品LAGB与HAGB中的{111}/{111}-NSB {111}重叠极图迹线分析
图13  铝合金压缩变形连续动态再结晶(CDRX)以及不连续动态再结晶(DDRX)面积分数随压缩温度的变化
图14  铝合金压缩变形CDRX及DDRX面积分数随压缩应变速率的变化
1 Georgantzia E, Gkantou M, Kamaris G S. Aluminium alloys as structural material: A review of research [J]. Eng. Struct., 2021, 227: 111372
2 Aamir M, Giasin K, Tolouei-Rad M, et al. A review: Drilling performance and hole quality of aluminium alloys for aerospace applications [J]. J. Mater. Res. Technol., 2020, 9: 12484
3 Jiang L, Zhang Z H, Fu H D, et al. Corrosion behavior and mechanism of Al-Zn-Mg-Cu alloy based on the characterization of the secondary phases [J]. Mater. Charact., 2022, 189: 111974
4 Zhang Z G, Ma X W, Zhang C S, et al. Effect of stress-aging treatment on the mechanical and corrosion properties of Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2022, A838: 142791
5 Wang X D, Pan Q L, Wang W Y, et al. Effects of pre-strain and aging treatments on the mechanical property and corrosion resistance of the spray formed ultra-high strength Al-Zn-Mg-Cu alloy [J]. Mater. Charact., 2022, 194: 112381
6 Peng X Y, Li Y, Xu G F, et al. Effect of precipitate state on mechanical properties, corrosion behavior, and microstructures of Al-Zn-Mg-Cu alloy [J]. Met. Mater. Int., 2018, 24: 1046
7 Rao A C U, Vasu V, Govindaraju M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1447
8 Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate [J]. Mater. Des., 2015, 85: 752
9 Lin Y C, Zhang J L, Liu G, et al. Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2015, 83: 866
10 Xiao Y P, Pan Q L, Li W B, et al. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2011, 32: 2149
11 Jiang J T, Xiao W Q, Yang L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2014, A605: 167
12 Yan J F, Hodge A M. Study of β precipitation and layer structure formation in Al 5083: The role of dispersoids and grain boundaries [J]. J. Alloys Compd., 2017, 703: 242
13 Alabbad B, Tin S. Effect of grain boundary misorientation on η phase precipitation in Ni-base superalloy 718Plus [J]. Mater. Charact., 2019, 151: 53
doi: 10.1016/j.matchar.2019.02.038
14 Aust K T. Grain boundary engineering [J]. Can. Metall. Q., 1994, 33: 265
15 Wang W G, Cai C H, Rohrer G S, et al. Grain boundary inter-connections in polycrystalline aluminum with random orientation [J]. Mater. Charact., 2018, 144: 411
16 Lee D S, Ryoo H S, Hwang S K. A grain boundary engineering approach to promote special boundaries in Pb-base alloy [J]. Mater. Sci. Eng., 2003, A354: 106
17 Liu Z Q, Wang W G. Study on Σ3 boundaries in an cold rolled and recrystallized Al-Cu alloy [J]. J. Chin. Electr Microsc. Soc., 2018, 37: 232
17 刘智强, 王卫国. 冷轧变形Al-Cu合金再结晶Σ3晶界研究 [J]. 电子显微学报, 2018, 37: 232
18 Du A H, Wang W G, Gu X F, et al. The dependence of precipitate morphology on the grain boundary types in an aged Al-Cu binary alloy [J]. J. Mater. Sci., 2021, 56: 781
19 Wang Z P, Wang W G, Rohrer G S, et al. {111}/{111} near singular boundaries in an Al-Zn-Mg-Cu Alloy recrystallized after rolling at different temperatures [J]. Acta Metall. Sin., 2023, 59: 947
19 王宗谱, 王卫国, Rohrer G S 等. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界 [J]. 金属学报, 2023, 59: 947
doi: 10.11900/0412.1961.2022.00027
20 Luo L, Liu Z Y, Bai S, et al. Hot deformation behavior considering strain effects and recrystallization mechanism of an Al-Zn-Mg-Cu alloy [J]. Materials, 2020, 13: 1743
21 Li B, Chu Z J, Du Y, et al. Hot deformation behavior and dynamic recrystallization kinetics of a novel sc and zr modified ultra-high-strength Al-Zn-Mg-Cu alloy [J]. J. Mater. Eng. Perform., 2020, 29: 7774
22 Ashrafizadeh S M, Eivani A R, Jafarian H R, et al. Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatment [J]. Mater. Sci. Eng., 2017, A687: 54
23 Xu C L, Huang J W, Jiang F Q, et al. Dynamic recrystallization and precipitation behavior of a novel Sc, Zr alloyed Al-Zn-Mg-Cu alloy during hot deformation [J]. Mater. Charact., 2022, 183: 111629
24 Rohrer G S, Saylor D M, E 1 Dasher B, et al. The Distribution of Internal Interfaces in Polycrystals [J]. Ze. Metall., 2004, 95: 197
25 Saylor D M, Eldasher B S, Adams B L, et al. Measuring the five-parameter grain-boundary distribution from observations of planar sections [J]. Metall. Mater. Trans., 2004, 35A: 1981
26 Beladi H, Rohrer G S. The distribution of grain boundary planes in interstitial free steel [J]. Metall. Mater. Trans., 2013, 44A:115
27 Wang W G, Du A H, Yang X M, et al. Quantitative determination of grain boundary inter-connections [P]. Chin Pat, 202011173146.8, 2021
27 王卫国, 杜阿华, 杨先明 等. 晶界界面匹配定量表征方法 [P]. 中国专利, 202011173146.8, 2021)
28 Yang X M, Wang W G, Gu X F. The near singular boundaries in BCC iron [J]. Philos. Mag., 2022, 102: 440
29 Wright S I, Larsen R J. Extracting twins from orientation imaging microscopy scan data [J]. J. Microsc., 2002, 205: 245
30 Yu Y N. Principles of Metallography [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 970
30 余永宁. 金属学原理 [M]. 第2版. 北京: 冶金工业出版社, 2013: 970
31 Sun B, Zhang T B, Song L, et al. Microstructural evolution and dynamic recrystallization of a nickel-based superalloy PM EP962NP during hot deformation at 1150oC [J]. J. Mater. Res. Technol, 2022, 18: 1436
32 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena [M]. Oxford: Elsevier, 2012: 428
33 Zhang J J, Yi Y P, He H L, et al. Kinetic model for describing continuous and discontinuous dynamic recrystallization behaviors of 2195 aluminum alloy during hot deformation [J]. Mater. Charact., 2021, 181: 111492
34 Zhang J J, Yi Y P, Huang S Q, et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation [J]. Mater. Sci. Eng., 2021, A804: 140650
35 Winther G, Huang X, Godfrey A, et al. Critical comparison of dislocation boundary alignment studied by TEM and EBSD: Technical issues and theoretical consequences [J]. Acta Mater., 2004, 52: 4437
36 Zhao J H, Deng Y L, Tang J G. Grain refining with DDRX by isothermal MDF of Al-Zn-Mg-Cu alloy [J]. J. Mater. Res. Technol., 2020, 9: 8001
37 Tang J G, Yi Y P, He H L, et al. Hot deformation behavior and microstructural evolution of the Al-Cu-Li alloy: A study with processing map [J]. J. Alloys Compd., 2023, 934: 167755
[1] 冯小铮, 王卫国, Gregory S. Rohrer, 陈松, 洪丽华, 林燕, 王宗谱, 周邦新. 晶粒长大对高纯Al {111}/{111}近奇异晶界的影响[J]. 金属学报, 2024, 60(1): 80-94.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[4] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[5] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[6] 冯迪, 张新明, 陈洪美, 金云学, 王国迎. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108.
[7] 张云崖 邓运来 万里 张新明. 形变热处理对Al-Zn-Mg-Cu合金板材组织与硬度的影响[J]. 金属学报, 2011, 47(10): 1270-1276.
[8] 方轶琉 刘振宇 张维娜 王国栋 宋红梅 江来珠. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46(6): 641-646.
[9] 王洪斌; 崔华; 郝斌; 程军胜; 黄进峰; 张济山 . 喷射沉积超高强Al-Zn-Mg-Cu合金的回归再时效处理[J]. 金属学报, 2005, 41(12): 1267-1271 .
[10] 杨滨; 程军胜; 樊建中; 田晓风; 陈汉宾; 张济山 . 低温球磨纳米晶Al-Zn-Mg-Cu合金组织的演变[J]. 金属学报, 2005, 41(11): 1195-1198 .