Processing math: 100%
Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 990-1000    DOI: 10.11900/0412.1961.2022.00549
  研究论文 本期目录 | 过刊浏览 |
贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析
高新亮1, 巴文月1, 张正1, 席仕平2, 徐东3, 杨志南1(), 张福成4
1 燕山大学 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
2 洛阳轴承研究所有限公司 洛阳 471039
3 河北工程大学 河北省高品质冷镦钢技术创新中心 邯郸 056038
4 华北理工大学 冶金与能源学院 唐山 063210
Model and Analysis of Solute Microsegregation in Bainite Rail Steel During Continuous Casting Process
GAO Xinliang1, BA Wenyue1, ZHANG Zheng1, XI Shiping2, XU Dong3, YANG Zhinan1(), ZHANG Fucheng4
1 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2 Luoyang Bearing Research Institute Co. Ltd., Luoyang 471039, China
3 Technology Innovation Center for High Quality Cold Heading Steel of Hebei Province, Hebei University of Engineering, Handan 056038, China
4 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
引用本文:

高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
Xinliang GAO, Wenyue BA, Zheng ZHANG, Shiping XI, Dong XU, Zhinan YANG, Fucheng ZHANG. Model and Analysis of Solute Microsegregation in Bainite Rail Steel During Continuous Casting Process[J]. Acta Metall Sin, 2024, 60(7): 990-1000.

全文: PDF(2972 KB)   HTML
摘要: 

为揭示贝氏体轨道钢凝固过程中的溶质再分配规律,本工作综合考虑钢液凝固过程中δ/γ相变和枝晶粗化的影响,建立了贝氏体轨道钢凝固过程中溶质元素微观偏析模型,分析了冷却速率、C含量、Mn含量、S含量、P含量对钢液凝固过程中枝晶间溶质元素微观偏析行为、零强度温度(ZST)和零塑性温度(ZDT)的影响。结果表明,枝晶间S、P元素偏析严重;在不同固相率时,冷却速率对溶质元素微观偏析的影响存在一定差异。C含量主要影响钢的凝固方式,进而影响凝固过程钢中溶质元素的微观偏析行为;Mn、P、S含量对其余溶质元素微观偏析影响不大。C、Mn含量的增加导致ZST和ZDT均降低;随冷却速率、S和P含量增加,ZST变化不大,ZDT明显降低。

关键词 贝氏体轨道钢凝固微观偏析连铸    
Abstract

With the rapid development of high-speed and heavy-haul railways, the reliability of railway track service performance is becoming increasingly important. Bainite rail steel is widely known for its excellent properties, but solute microsegregation during solidification of molten steel affects the quality of continuous casting bloom, which can damage bainite rail steel components during service. Therefore, studying solute microsegregation of bainite rail steel during the continuous casting process is necessary. Solute microsegregation in steel occurs when solute redistributes between solid and liquid phases during solidification of molten steel. The factors that influence solute microsegregation include the equilibrium distribution coefficient of solute elements at the solid-liquid interface, cooling rate, reverse diffusion strength of solute elements in the solid phase, and dendrite coarsening. Among them, the reverse diffusion strength of solute elements in the solid phase and dendrite coarsening are two important factors that cannot be ignored. In this study, a model of solute microsegregation is established, which takes into consideration both δ/γ phase transformation and dendrite coarsening during the solidification process of bainite rail steel. The effects of cooling rate and C, Mn, S, and P contents on interdendritic solute microsegregation, zero strength temperature (ZST), and zero ductility temperature (ZDT) of steel are analyzed. The results show that S and P are more likely to segregate between dendrites compared to other elements in bainite rail steel. The effect of cooling rate on the microsegregation of solute elements varies with solid fractions. When the solid fraction is 0.99, the segregations of Si, Mn, Cr, Ni, Mo, P, and S increase differently with the increase of cooling rate. C content mainly affects the solidification mode of steel, which then affects the segregation behavior of other elements during solidification. C content has a more significant effect on the microsegregation of S and P compared to other elements in bainite rail steel. In contrast, the contents of Mn, P, and, S have little effect on the microsegregation of other solute elements. The increase in C and Mn contents result in a decrease in ZST and ZDT. However, with an increase in cooling rate and S and P contents, ZST has little change, and ZDT decreases significantly.

Key wordsbainite rail steel    solidification    microsegregation    continuous casting
收稿日期: 2022-10-28     
ZTFLH:  TF777.2  
基金资助:国家重点研发计划项目(2021YFB3703500);国家自然科学基金项目(52122410);国家自然科学基金项目(51604241)
通讯作者: 杨志南,zhinanyang@ysu.edu.cn,主要从事先进钢铁材料的研究
Corresponding author: YANG Zhinan, professor, Tel: 15033513870, E-mail: zhinanyang@ysu.edu.cn
作者简介: 高新亮,男,1984年生,副教授,博士
Elementkδ/LiDδS,i / (10-4 m2·s-1)kγ/LiDγS,i / (10-4 m2·s-1)mi / (oC·%-1)
C0.190.0127exp(-81382.6 / (RT))0.340.076exp(-134563.8 / (RT))78.0
Si0.778.0exp(-248959.7 / (RT))0.520.3exp(-251470.3 / (RT))7.6
Mn0.760.76exp(-224440.3 / (RT))0.780.055exp(-249378.2 / (RT))4.9
P0.232.9exp(-230130.9 / (RT))0.130.001exp(-182849.4 / (RT))34.4
S0.054.56exp(-214649.3 / (RT))0.042.4exp(-223516.8 / (RT))38.0
Cr0.952.4exp(-239796.3 / (RT))0.860.0012exp(-219000.9 / (RT))1.0
Ni0.831.6exp(-240005.6 / (RT))0.950.34exp(-282391.5 / (RT))4.7
Mo0.803.47exp(-241386.3 / (RT))0.590.068exp(-246867.6 / (RT))2.6
表1  元素的平衡分配系数、扩散系数和液相线斜率[26]
图1  P和Mn元素偏析计算值与实测值[30,31]的对比
图2  零强度温度(ZST)和零塑性温度(ZDT)计算值[32~35]与实测值的比对
图3  凝固过程中固/液界面温度和溶质元素偏析度变化
图4  不同固相率下C含量对溶质元素微观偏析度的影响
图5  不同固相率下Mn含量对溶质元素微观偏析度的影响
图6  不同固相率下S含量对溶质元素微观偏析度的影响
图7  不同固相率下P含量对溶质元素微观偏析度的影响
图8  不同固相率下冷却速率对溶质元素微观偏析度的影响
图9  溶质元素含量和冷却速率对凝固特征温度的影响
1 Zhang F C, Yang Z N, Kang J. Research progress of bainitic steel used for railway crossing [J]. J. Yanshan Univ., 2013, 37: 1
1 张福成, 杨志南, 康 杰. 铁路辙叉用贝氏体钢研究进展 [J]. 燕山大学学报, 2013, 37: 1
2 Tan Z L, Gao B, Gao G H, et al. Current development situation of bainitic rails at home and abroad [J]. Heat Treat. Met., 2018, 43(4): 10
2 谭谆礼, 高 博, 高古辉 等. 国内外贝氏体钢轨的研发现状 [J]. 金属热处理, 2018, 43(4): 10
3 Xu D M, Zhang C J, Si G J. Micro-/macro-scopic modeling of solutal mass transport in dendrite solidification with partial solid back diffusion [J]. Acta Metall. Sin., 1998, 34: 678
3 徐达鸣, 张成军, 司广琚. 任意固相反扩散条件下枝晶凝固溶质传输微观/宏观模型化 [J]. 金属学报, 1998, 34: 678
4 Zhao G W, Ding C, Ye X C, et al. Influences of initial compositions, dendrite morphologies and solid-back diffusion on solidification path of Al-Si-Mg alloys [J]. J. Phase Equilib. Diffus., 2018, 39: 212
5 Feng K, Han Z W, Wang Y, et al. The microsegregation mathematical model for binary alloy based on coarsening and back-diffusion [J]. Foundry, 2006, 55: 699
5 冯 科, 韩志伟, 王 勇 等. 基于枝晶粗化和反向扩散的二元合金微观偏析数学模型 [J]. 铸造, 2006, 55: 699
6 He S Y, Zhan T J, Li C J, et al. Enhanced dendrite coarsening and microsegregation in Al-Cu alloy under a steady magnetic field [J]. Mater. Trans., 2019, 60: 1921
7 Zhang Q Y, Fang H, Xue H, et al. Interaction of local solidification and remelting during dendrite coarsening—Modeling and comparison with experiments [J]. Sci. Rep., 2017, 7: 17809
8 Hardin R A, Liu K, Beckermann C, et al. A transient simulation and dynamic spray cooling control model for continuous steel casting [J]. Metall. Mater. Trans., 2003, 34B: 297
9 Wang X Y, Liu Q, Wang B, et al. Optimal control of secondary cooling for medium thickness slab continuous casting [J]. Ironmaking Steelmaking, 2011, 38: 552
10 Han Z Q, Cai K K. Study on a mathematical model of microsegregation in continuously cast slab [J]. Acta Metall. Sin., 2000, 36: 869
10 韩志强, 蔡开科. 连铸坯中微观偏析的模型研究 [J]. 金属学报, 2000, 36: 869
11 Kim K, Han H N, Yeo T J, et al. Analysis of surface and internal cracks in continuously cast beam blank [J]. Ironmaking Steelmaking, 1997, 24: 249
12 Kim K H, Yeo T J, Oh K H, et al. Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks [J]. ISIJ Int., 1996, 36: 284
13 Yamanaka A, Nakajima K, Okamura K. Critical strain for internal crack formation in continuous casting [J]. Ironmaking Steelmaking, 1995, 22: 508
14 Li Y G, Zhang F C, Chen C, et al. Effects of deformation on the microstructures and mechanical properties of carbide-free bainitic steel for railway crossing and its hydrogen embrittlement characteristics [J]. Mater. Sci. Eng., 2016, A651: 945
15 Wang Y H, Zhang F C, Wang T S. A novel bainitic steel comparable to maraging steel in mechanical properties [J]. Scr. Mater., 2013, 68: 763
16 Cao D, Kang J, Long X Y, et al. Research on heat treatment of bainitic steel crossing [J]. J. Mech. Eng., 2014, 50(4): 47
16 曹 栋, 康 杰, 龙晓燕 等. 贝氏体钢辙叉热处理工艺研究 [J]. 机械工程学报, 2014, 50(4): 47
17 Zhu M, Xu G, Zhou M X, et al. Effects of tempering on the microstructure and properties of a high-strength bainite rail steel with good toughness [J]. Metals, 2018, 8: 484
18 Zhu J, Yang J C, Chen Z Y, et al. Variation law of typical inclusions in bainitic steel production process [J]. Steelmaking, 2022, 38(3): 62
18 朱 君, 杨吉春, 谌智勇 等. 贝氏体钢生产流程中典型夹杂物变化规律 [J]. 炼钢, 2022, 38(3): 62
19 Ren Q, Zhang Y X, Zhang L F, et al. Prediction on the spatial distribution of the composition of inclusions in a heavy rail steel continuous casting bloom [J]. J. Mater. Res. Technol., 2020, 9: 5648
20 Lee K M, Polycarpou A A. Microscale experimental and modeling wear studies of rail steels [J]. Wear, 2011, 271: 1174
21 Rojhirunsakool T, Thublaor T, Bidabadi M H S, et al. Corrosion behavior of multiphase bainitic rail steels [J]. Metals, 2022, 12: 694
22 Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels [J]. Metall. Mater. Trans., 2001, 32A: 1755
23 Ohnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase [J]. Trans. Iron Steel Inst. Jpn., 1986, 26: 1045
24 Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion [J]. Metall. Trans., 1981, 12A: 965
25 Voller V R, Beckermann C. A unified model of microsegregation and coarsening [J]. Metall. Mater. Trans., 1999, 30A: 2183
26 Xu Y B, Song S D. Study on solute microsegregation model inmushy zone during continuous casting [J]. Contin. Cast., 2015, 40(5): 67
26 徐永斌, 宋胜德. 钢连铸过程中两相区溶质微观偏析模型研究 [J]. 连铸, 2015, 40(5): 67
27 Dou K, Qing J S, Wang L, et al. Research on internal crack susceptibility of continuous-casting bloom based on micro-segregation model [J]. Acta Metall. Sin., 2014, 50: 1505
doi: 10.11900/0412.1961.2014.00317
27 窦 坤, 卿家胜, 王 雷 等. 基于微观偏析模型的连铸方坯内裂纹敏感性研究 [J]. 金属学报, 2014, 50: 1505
28 Chen H B, Long M J, Chen D F, et al. Variation of equilibrium partition coefficient of solutes in steel 45 during solidification and phase transformation [J]. J. Iron Steel Res., 2017, 29: 637
28 陈华标, 龙木军, 陈登福 等. 45钢凝固相变过程中溶质平衡分配系数的变化 [J]. 钢铁研究学报, 2017, 29: 637
doi: 10.13228/j.boyuan.issn1001- 0963.20160299
29 Zhu L G, Liu Z, Han Y H. A microsegregation model in the two-phase region of an ND steel continuous casting billet [J]. Chin. J. Eng., 2019, 41: 461
29 朱立光, 刘 震, 韩毅华. ND钢连铸坯两相区内的微观偏析模型 [J]. 工程科学学报, 2019, 41: 461
30 Matsumiya T, Kajioka H, Mizoguchi S, et al. Mathematical analysis of segregations in continuously-cast slabs [J]. Trans. Iron Steel Inst. Jpn., 1984, 24: 873
31 Wintz M, Bobadilla M, Lehmann J, et al. Experimental study and modeling of the precipitation of non-metallic inclusions during solidification of steel [J]. ISIJ Int., 1995, 35: 715
32 Seol D J, Won Y M, Oh K H, et al. Mechanical behavior of carbon steels in the temperature range of mushy zone [J]. ISIJ Int., 2000, 40: 356
33 Schmidtmann E, Rakoski F. Influence of the carbon content of 0.015 to 1% and of the structure on the high-temperature strength and toughness behavior of structural steels after solidification from the melt [J]. Arch. Eisenhuttenwes, 1983, 54: 357
34 Adams C J. Hot ductility and strength of strand cast steels up to their melting points [C]. Open Hearth Proceedings [A]. New York: TMS-AIME, 1971, 54: 290
35 Bleck W, Dahl W, Picht G, et al. Chemistry effects on the crack susceptibility of structural steels during continuous casting [J]. Steel Res., 2001, 72: 496
36 Cai Z Z, Zhu M Y. Microsegregation of solute elements in solidifying mushy zone of steel and its effect on longitudinal surface cracks of continuous casting strand [J]. Acta Metall. Sin., 2009, 45: 949
36 蔡兆镇, 朱苗勇. 钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响 [J]. 金属学报, 2009, 45: 949
37 Cai Z Z, Zhu M Y. Influence of solute segregation on crack susceptibility at solidification front of continuous casting strand [J]. Foundry Technol., 2009, 30: 1396
37 蔡兆镇, 朱苗勇. 溶质偏析对连铸坯凝固前沿裂纹敏感性影响的研究 [J]. 铸造技术, 2009, 30: 1396
38 Luo S, Zhu M Y, Ji C, et al. Solute microsegregation model for continuous casting process of steel [J]. Iron Steel, 2010, 45(6): 31
38 罗 森, 朱苗勇, 祭 程 等. 钢连铸过程的溶质微观偏析模型 [J]. 钢铁, 2010, 45(6): 31
[1] 朱绍祥, 王清江, 刘建荣, 陈志勇. TC19合金铸锭中ZrMo元素的宏观偏析行为[J]. 金属学报, 2024, 60(7): 869-880.
[2] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[3] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[4] 朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[8] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[9] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[10] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[11] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[12] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.