Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1189-1199    DOI: 10.11900/0412.1961.2023.00263
  研究论文 本期目录 | 过刊浏览 |
电子束熔炼功率对GH4068合金微观组织、偏析和 γ相析出行为的影响
白如圣1,2, 谭毅1,2(), 崔弘阳1,2, 宁莉丹1,2, 崔传勇3, 王云鹏1, 李鹏廷1,2
1.大连理工大学 材料科学与工程学院 大连 116024
2.大连理工大学 辽宁省载能束冶金及先进材料制备重点实验室 大连 116024
3.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Electron Beam Smelting Power on Microstructure, Segregation, and γ′ Phase Precipitation Behavior of GH4068 Alloy
BAI Rusheng1,2, TAN Yi1,2(), CUI Hongyang1,2, NING Lidan1,2, CUI Chuanyong3, WANG Yunpeng1, LI Pengting1,2
1.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory For Energy Beam Metallurgy and Advanced Materials Preparation of Liaoning Province, Dalian University of Technology, Dalian 116024, China
3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

白如圣, 谭毅, 崔弘阳, 宁莉丹, 崔传勇, 王云鹏, 李鹏廷. 电子束熔炼功率对GH4068合金微观组织、偏析和 γ相析出行为的影响[J]. 金属学报, 2024, 60(9): 1189-1199.
Rusheng BAI, Yi TAN, Hongyang CUI, Lidan NING, Chuanyong CUI, Yunpeng WANG, Pengting LI. Effect of Electron Beam Smelting Power on Microstructure, Segregation, and γ′ Phase Precipitation Behavior of GH4068 Alloy[J]. Acta Metall Sin, 2024, 60(9): 1189-1199.

全文: PDF(3919 KB)   HTML
摘要: 

高合金化的变形高温合金铸态组织存在微观偏析较大、组织均匀性差等问题,严重影响了其后续热加工性能。为了优化变形高温合金的铸态组织,采用电子束熔炼(EBS)法熔炼GH4068合金,采用不同EBS功率熔炼10 min制备低偏析的GH4068合金铸锭。结果表明:经过EBS熔炼后的铸锭底部为细晶区,仅存在胞状偏析和胞状树枝晶,中部较大区域为竖直生长的柱状晶区,二次枝晶生长方向与柱状晶生长方向平行,顶部存在少量等轴晶,枝晶生长方向较为杂乱。成分分析表明,合金中Cr元素挥发最为明显,当EBS功率为17 kW时,其含量降低1.97%。EBS较传统真空感应熔炼(VIM) +电渣重熔熔炼(ESR)双联工艺所制备的铸锭组织更为均匀,当EBS功率为12 kW时,二次枝晶间距λ2为44.6 μm,与双联工艺相比,λ2减小了32.2%,铸锭枝晶区微观偏析程度明显降低,典型易偏析元素Ti和W的微观偏析程度分别降低了20.4%和18.6%。枝晶间γ′相尺寸较大、呈块状析出,而枝晶干的γ′相呈球状且尺寸较枝晶间更为均匀细小,在EBS功率为12 kW时所制备铸锭的γ′相尺寸最小且枝晶间不规则γ′相最少。在EBS过程中,熔体的实际温度远高于合金的熔化温度,熔体经过过热处理后团簇结构有效分解,元素分布更为均匀,在凝固过程中过冷度增加,熔体的均匀性遗传到凝固组织中使铸态组织细化,微观偏析程度降低。同时,在EBS过程中,由于电子束在熔池表面的轰击产生局部高温,能够有效降低合金中的N含量。

关键词 电子束熔炼高温合金枝晶组织微观偏析    
Abstract

The as-cast structure of high-alloyed wrought superalloys exhibits disadvantages such as high microscopic segregation and poor microstructure uniformity, severely affecting their subsequent hot working and deformation properties. To optimize the as-cast structure of the wrought superalloy, GH4068 alloy was smelted via electron beam smelting (EBS), and its ingots with low segregation were prepared by setting different EBS powers for 10 min. The results show that the bottom of the ingots after EBS appeared to be fine grain regions, with the presence of only cellular segregation structure and cellular dendritic crystal; the large area in the middle became vertically growing columnar crystal regions, the direction of secondary dendrite crystal growth was parallel to that of the columnar crystal growth; a small amount of equiaxed crystal was observed at the top, and the growth direction of dendritic crystals was disordered. Analyzing the compositions of ingots revealed that Cr volatilization in this alloy was the most obvious; the Cr content decreased by 1.97% when the EBS power was 17 kW. The ingot structure prepared via EBS was more highly distributed than that obtained using the traditional vacuum induction melting + electroslag remelting duplex process. When the EBS power was 12 kW, the secondary dendrite spacing λ2 was 44.6 μm, which was 32.2% less than that yielded using the duplex process, the degree of the microscopic segregation of the ingot dendrite region decreased considerably, and the degree of the microscopic segregation of the typical easily segregated elements Ti and W reduced by 20.4% and 18.6%, respectively. Furthermore, the massive precipitation of large interdendritic γ′ phases were observed, while the γ′ phases in the dendritic core were spherical and smaller in size than those in the interdendritic. Meanwhile, the ingot prepared with an EBS power of 12 kW achieved the smallest size for γ′ phases and least irregular γ′ phases in the interdendritic. In the EBS process, the actual melt temperature was considerably higher than the alloy melting temperature. After the overheating of the melt, the cluster structure effectively decomposed, elements were uniformly distributed, the degree of subcooling increased in the solidification process, and the uniformity of the melt was inherited to the solidification structure to refine the as-cast structure and reduce the degree of microscopic segregation. Meanwhile, during the EBS process, local high temperature generated due to the electron beam bombardment on the surface of the molten pool effectively reduced the N content in the alloy.

Key wordselectron beam smelting    superalloy    dendritic structure    microscopic segregation
收稿日期: 2023-06-19     
ZTFLH:  TF19  
基金资助:国家重点研发计划项目(2019YFA0705300)
通讯作者: 谭 毅,lnsolar@dlut.edu.cn,主要从事载能束冶金制备高温合金的研究
Corresponding author: TAN Yi, professor, Tel: (0411)84707583, E-mail: lnsolar@dlut.edu.cn
作者简介: 白如圣,男,1998年生,博士生
图1  SEBM-30A型电子束熔炼(EBS)装备示意图
图2  GH4068合金的DSC升温曲线
图3  EBS工艺为12 kW、10 min时GH4068合金铸锭的宏观相貌
图4  不同EBS功率熔炼10 min制备的GH4068合金铸锭的质量损失和质量损失率
Power / kWMoWCoCrTiAlNi
100.0500-0.680.060.03-
120.0900.06-1.370.220.03-
140.1000.11-1.380.240.02-
170.150.01-0.09-1.970.390.08-
表1  不同EBS功率熔炼10 min 制备的GH4068合金铸锭中各元素含量相对于原料的变化量 (mass fraction / %)
图5  EBS工艺为12 kW、10 min时GH4068铸锭中心区域晶粒和枝晶结构的OM像
图6  温度梯度(G)和凝固速率(R)随凝固时间的变化曲线及G /R和合金成分(ω0)对合金晶粒生长形貌的影响
图7  双联工艺[14]和不同EBS功率熔炼10 min制备的GH4068合金铸锭的二次枝晶间距(λ2)和冷却速率
图8  过热温度、形核过冷度与团簇结构变化的关系示意图
图9  EBS工艺为12 kW、10 min时制备的GH4068合金铸锭枝晶组织的背散射电子(BSE)-SEM像和EPMA元素面扫描分布图
图10  双联工艺[14]和不同EBS功率熔炼10 min制备的GH4068合金铸锭元素的微观偏析系数
图11  不同EBS功率熔炼10 min制备的GH4068合金铸锭中γ′相在枝晶干析出的SEM像
图12  不同EBS功率熔炼10 min制备的GH4068合金铸锭中γ′相在枝晶间析出的SEM像
图13  不同EBS功率熔炼10 min制备的GH4068合金铸锭枝晶干和枝晶间γ′相的平均尺寸
1 Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
2 Gu Y, Harada H, Cui C, et al. New Ni-Co-base disk superalloys with higher strength and creep resistance [J]. Scr. Mater., 2006, 55: 815
3 Cui C Y, Gu Y F, Yuan Y, et al. Enhanced mechanical properties in a new Ni-Co base superalloy by controlling microstructures [J]. Mater. Sci. Eng., 2011, A528: 5465
4 Zhou Z J, Zhang R, Cui C Y, et al. Effects of homogenization treatment on the microsegregation of a Ni-Co based superalloy produced by directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 943
5 Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
doi: 10.11900/0412.1961.2015.00442
5 谷月峰, 崔传勇, 袁 勇 等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
6 Chen G S, Liu F J, Wang Q Z, et al. Triple-melted process and metallurgical quality of GH4169 alloy by the VIM + PESR + VAR processing [J]. J. Iron Steel Res., 2011, 23: 134
6 陈国胜, 刘丰军, 王庆增 等. GH4169合金VIM + PESR + VAR三联冶炼工艺及其冶金质量 [J]. 钢铁研究学报, 2011, 23: 134
7 Dong T W, Kou S Z, Pu Y L, et al. Microstructure and mechanical properties of K4169 alloy by the cold crucible levitation melting [J]. Foundry, 2015, 64: 1254
7 董天文, 寇生中, 蒲永亮 等. 水冷铜坩埚悬浮熔炼K4169合金的组织和力学性能 [J]. 铸造, 2015, 64: 1254
8 Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
9 You Q F, Yuan H, You X G, et al. Segregation behavior of nickel-based superalloy after electron beam smelting [J]. Vacuum, 2017, 145: 116
10 You X G, Tan Y, You Q F, et al. Preparation of Inconel 740 superalloy by electron beam smelting [J]. J. Alloys Compd., 2016, 676: 202
11 Vutova K, Vassileva V, Koleva E, et al. Investigation of electron beam melting and refining of titanium and tantalum scrap [J]. J. Mater. Process. Technol., 2010, 210: 1089
12 Choi G S, Lim J W, Munirathnam N R, et al. Preparation of 5N grade tantalum by electron beam melting [J]. J. Alloys Compd., 2009, 469: 298
13 Yao K, Min X H, Shi S, et al. Volatilization behavior of β-type Ti-Mo alloy manufactured by electron beam melting [J]. Metals, 2018, 8: 206
14 Zhuang X P, Tan Y, Zhao L H, et al. Microsegregation of a new Ni-Co-based superalloy prepared through electron beam smelting and its homogenization treatment [J]. J. Mater. Res. Technol., 2020, 9: 5422
15 Wang Y L, Tan Y, Cui C Y, et al. Evaporation behavior of alloying elements and calculation of molten pool temperature in electron beam smelting of a new Ni-Co based superalloy [J]. Mater. Rep., 2023, 37(1): 176
15 王以霖, 谭 毅, 崔传勇 等. 电子束熔炼新型Ni-Co基高温合金过程中合金元素的挥发行为及熔池温度计算 [J]. 材料导报, 2023, 37(1): 176
16 Liu G Q, Feng L, Wang H M, et al. Statistics on the primary dendrite spacing of Ni-based single crystal super alloys [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 153
16 刘贵群, 冯 丽, 王贺明 等. 镍基单晶高温合金一次枝晶间距的统计研究 [J]. 特种铸造及有色合金, 2021, 41: 153
doi: 10.15980/j.tzzz.2021.02.005
17 Zhao J. Fundamentals of Materials Science [M]. 2nd Ed., Dalian: Dalian University of Technology Press, 2015: 269
17 赵 杰. 材料科学基础 [M]. 第2版. 大连: 大连理工大学出版社, 2015: 269
18 Raghavan N, Dehoff R, Pannala S, et al. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing [J]. Acta Mater., 2016, 112: 303
19 Zhang W, Roy G G, Elmer J W, et al. Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel [J]. J. Appl. Phys., 2003, 93: 3022
20 He X, Elmer J W, Debroy T. Heat transfer and fluid flow in laser microwelding [J]. J. Appl. Phys., 2005, 97: 084909
21 Cui H Y, Tan Y, Bai R S, et al. Microsegregation of a new Ni-Co-based superalloy prepared by electron beam smelting layered solidification technology and its homogenization behavior [J]. Mater. Charact., 2022, 184: 111668
22 Yin F S, Sun X F, Guan H R, et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963 [J]. J. Alloys Compd., 2004, 364: 225
23 Yin F S, Zheng Q, Sun X F, et al. Effect of melt treatment on carbides formation in a cast nickel-base superalloy M963 [J]. J. Mater. Process. Technol., 2007, 183: 440
24 Wang H F, Su H J, Zhang J, et al. Effect of melt thermal history on solidification behavior and microstructural characteristics of a third-generation Ni-based single crystal superalloy [J]. J. Alloys Compd., 2016, 688: 430
25 Calvo-dahlborg M, Popel P S, Kramer M J, et al. Superheat-dependent microstructure of molten Al-Si alloys of different compositions studied by small angle neutron scattering [J]. J. Alloys Compd., 2013, 550: 9
26 Wang C S, Zhang J, Liu L, et al. Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment [J]. J. Alloys Compd., 2010, 508: 440
[1] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[2] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[3] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[4] 刘金来, 孙晶霞, 孟杰, 李金国. 一种第三代单晶高温合金的组织稳定性与持久性能[J]. 金属学报, 2024, 60(6): 770-776.
[5] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[6] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[7] 刘丞济, 孙文瑶, 陈明辉, 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 2024, 60(4): 485-494.
[8] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.
[9] 龙江东, 段慧超, 赵鹏, 张瑞, 郑涛, 曲敬龙, 崔传勇, 杜奎. GH4151镍基高温合金 μ 相中的基面层错[J]. 金属学报, 2024, 60(2): 167-178.
[10] 谭子昊, 李永梅, 王新广, 赵浩川, 谭海兵, 王标, 李金国, 周亦胄, 孙晓峰. 一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制[J]. 金属学报, 2024, 60(2): 154-166.
[11] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[12] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[13] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[15] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.