Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 388-404    DOI: 10.11900/0412.1961.2022.00494
  研究论文 本期目录 | 过刊浏览 |
基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析
董士虎1,2, 张红伟1,2(), 吕文朋1,2, 雷洪1,2, 王强1,2
1东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
2东北大学 冶金学院 沈阳 110819
Numerical Simulation on Macrosegregation in Fe-C Alloy Under Solidification Shrinkage Through Interface Tracking-Dynamic Mesh Technique
DONG Shihu1,2, ZHANG Hongwei1,2(), LÜ Wenpeng1,2, LEI Hong1,2, WANG Qiang1,2
1Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
Shihu DONG, Hongwei ZHANG, Wenpeng LÜ, Hong LEI, Qiang WANG. Numerical Simulation on Macrosegregation in Fe-C Alloy Under Solidification Shrinkage Through Interface Tracking-Dynamic Mesh Technique[J]. Acta Metall Sin, 2024, 60(3): 388-404.

全文: PDF(4156 KB)   HTML
摘要: 

Fe-C系合金铸锭因C元素分配系数小、铸锭尺寸较大,易产生C偏析缺陷;同时因合金液-固相密度差异以及铁素体、奥氏体等相密度的差异都易产生并加剧凝固收缩。对凝固收缩的模拟研究表明,气相(渣相)的引入对偏析影响甚微,主要起补充顶端收缩腔的作用,但却导致气-合金界面模拟困难。为了简化模拟的复杂性,本工作基于液-固混相的连续介质模型,将凝固过程中收缩的体积与固相区、糊状区及液相区下降的体积建立关联,从而确定熔体顶端边界;结合动网格技术,开发了一种追踪收缩腔界面的模型,实现了Fe-C合金铸锭凝固收缩和宏观偏析的耦合模拟,预测的收缩腔形状与实验相符。结果表明:Fe-0.3%C合金铸锭凝固过程中,在热-溶质浮升力影响的基础上,考虑凝固收缩后,预测的铸锭顶部正偏析最大值减少了4.78%。铸锭顶端界面的换热,会减轻铸锭顶端正偏析。耦合热-溶质浮升力及凝固收缩影响,顶端与环境换热系数为h = 2.0 W/(m2·K) 的铸锭上部溶质分布更符合文献实验测量结果。在热-溶质浮升力影响的基础上,考虑凝固收缩增强了糊状区内溶质浮力影响,致使铸锭凝固前沿主流股旋流方向更快反转,熔钢流速超过仅考虑热-溶质浮升力时的流速,从而加快了铸锭凝固速率。本模型预测的铸锭底端负偏析小于文献实验结果,这是由于本模型仅考虑了液-柱状晶混相,进一步的模型中需加入等轴晶粒沉降的影响。

关键词 Fe-C合金凝固收缩宏观偏析界面追踪动网格    
Abstract

Macrosegregation is the mutual contribution of many factors, such as thermo-solutal buoyancy-induced flow, solidification shrinkage, and grain movements, during alloy solidification. Fe-C-based alloy ingot is apt to form carbon segregation due to C's relatively small partition coefficient and the large ingot cross-section size. Moreover, it is also easy to generate solidification shrinkage because of the density difference between the liquid and solid and among ferrite, austenite, and other solids in the alloy. The numerical studies on solidification shrinkage show that introducing the air (or slag) phase mainly fills up the shrinkage cavity, which appears in the top part of the ingot. Although it has minor effect on segregation, it creates severe difficulty in solving the continuum transport equations at air-alloy interface owing to the large difference in their physical properties, such as density and thermal conductivity. A method that tracks the boundary profile of the cavity due to solidification shrinkage was developed in the present work to study macrosegregation under solidification shrinkage while avoid solving the air-alloy interaction. Macrosegregation under solidification shrinkage in Fe-C alloy ingot was predicted through the traditional liquid-solid mixed continuum model. To this end, the melt-air interface position was determined through allocating the shrink in volume to the solidified, mushy and liquid zones by the dynamic mesh technique. The predicted shape of the shrinkage cavity was fitted with the experimental one in the literature. Comparing the impact of thermo-solutal buoyancy showed that the predicted maximum positive C segregation at the top part of the Fe-0.3%C alloy ingot decreased by 4.78% with the additional consideration of solidification shrinkage. However, the heat exchange between the surroundings' and ingot's top surface reduced the positive C segregation near the latter. The C concentration distribution at the upper part of the ingot was more consistent with the experimental results in the literature when a heat transfer coefficient of 2.0 W/(m2·K) was adopted at the ingot's top surface, besides the effects of the thermo-solutal buoyancy and solidification shrinkage are considered. Compared with the thermo-solutal buoyancy influence, the solidification shrinkage enhanced the solutal buoyancy impact in the mushy zone. This made a faster reverse circulation in the mainstream ahead of the solidification front and led to the maximum flow velocity all over the molten steel exceeding that of mere thermo-solutal buoyancy during the solidification. All of them accelerated the overall solidification rate of the ingot. However, the predicted negative segregation at the lower part of the ingot was lower than the experimental data in the literature because the present continuum model only consisted of a liquid-columnar mixture. The movement of equiaxial grains needs to be included in further consideration.

Key wordsFe-C alloy    solidification shrinkage    macrosegregation    interface tracking    dynamic mesh
收稿日期: 2022-10-08     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目(51574074);国家自然科学基金项目(51425401);国家自然科学基金钢铁联合研究基金项目(U1460108);国家自然科学基金钢铁联合研究基金项目(U1560207);辽宁省教育厅基金项目(L20150183);沈阳市自然科学基金项目(23-503-6-07)
通讯作者: 张红伟,hongweizhang@epm.neu.edu.cn,主要从事合金宏观微观偏析预测与控制、碳化物析出预测等方面研究
Corresponding author: ZHANG Hongwei, professor, Tel: (024)83681758, E-mail: hongweizhang@epm.neu.edu.cn
作者简介: 董士虎,男,1998年生,硕士生
图1  10.5 t钢锭的2D计算域
图2  凝固收缩第II阶段铸锭顶端体积变化关系
ParameterUnitSn-5%Pb alloy*Fe-0.3%C alloyRef.
Melting point of pure solvent TfK505.151805.15[30]
Liquidus slope mK·%-1-1.286-80.45[30]
Equilibrium partition coefficient k-0.06560.36[30]
External temperatureK298.15300[30]
Melt density ρlkg·m-370007027[18]
Solid density ρskg·m-370007324[18]
Specific heat cpJ·kg-1·K-1260500[30]
Thermal conductivity ksW·m-1·K-15534[30]
Latent heat LJ·kg-16.1 × 1032.71 × 105[30]
Viscosity μkg·m-1·s-11 × 10-34.2 × 10-3[18]
Thermal expansion coefficient βTK-16 × 10-51.07 × 10-4[30]
Solutal expansion coefficient βc%-1-5.3 × 10-41.4 × 10-2[30]
Secondary dendrite arm spacing λ2m6.5 × 10-55 × 10-4[30]
Diffusion coefficient of C in liquid Dlm2·s-11 × 10-82 × 10-8[18]
Reference temperature TrefK499.151782
Reference concentration (mass fraction) cref%50.3
Reference temperature in enthalpy definition T0K273273
Time step Δts0.10.05
表1  模拟合金的物性参数[18,30,31]
图3  Sn-5%Pb合金凝固400 s时溶质Pb的相对浓度分布
图4  Sn-5%Pb合金完全凝固时,距铸型底面不同高度处Pb的相对浓度分布曲线
图5  铸锭凝固结束时相对溶质浓度分布
图6  铸锭中心线上溶质相对浓度分布
图7  耦合考虑热-溶质浮升力+凝固收缩下收缩腔形成过程
图8  仅考虑凝固收缩情况下收缩腔形成过程
图9  仅考虑热-溶质浮升力和凝固收缩+热-溶质浮升力、不同时刻的液相分数和速度场
图10  仅热-溶质浮升力作用下不同时刻和位置铸锭中界面前沿溶质浮力与热浮力曲线
图11  凝固收缩+热-溶质浮升力作用下不同时刻和位置铸锭中界面前沿溶质浮力与热浮力曲线
图12  铸锭凝固结束时相对溶质浓度分布
图13  铸锭中溶质相对浓度分布
图14  不同顶端换热条件下铸锭内相对溶质浓度分布
图15  铸锭中心线溶质相对浓度分布图
1 Liu B C. The role and prospect of modeling and simulation in equipment manufacturing [J]. Aeron. Manuf. Technol., 2008, (3): 26
1 柳百成. 建模与仿真在装备制造中的作用与前景 [J]. 航空制造技术, 2008, (3): 26
2 Beckermann C. Modelling of macrosegregation: Applications and future needs [J]. Int. Mater. Rev., 2002, 47: 243
doi: 10.1179/095066002225006557
3 Stefanescu D M. Computer simulation of shrinkage-related defects in castings—A review [A]. Shape Casting: The John Campbell Symposium [M]. San Francisco: TMS, 2005: 295
4 Li J, Xu X W, Ren N, et al. A review on prediction of casting defects in steel ingots: From macrosegregation to multi-defect model [J]. J. Iron Steel Res. Int., 2022, 29: 1901
doi: 10.1007/s42243-022-00848-7
5 Flemings M C, Nereo G E. Macrosegregation: Part I [J]. Trans. Met. Soc. AIME, 1967, 239: 49
6 Flemings M C, Mehrabian R, Nereo G E. Macrosegregation: Part II [J]. Trans. Met. Soc. AIME, 1968, 242: 41
7 Flemings M C. Principles of control of soundness and homogeneity of large ingots [J]. Scand. J. Metall., 1976, 5: 1
8 Chiang K G, Tsai H L. Shrinkage-induced fluid flow and domain change in two-dimensional alloy solidification [J]. Int. J. Heat Mass Transfer, 1992, 35: 1763
doi: 10.1016/0017-9310(92)90146-J
9 Krane M J M, Incropera F P. Analysis of the effect of shrinkage on macrosegregation in alloy solidification [J]. Metall. Mater. Trans., 1995, 26A: 2329
10 Zhang S L, Yanke J, Johnson D R, et al. Modeling defects in castings using a volume of fluid method [J]. Int. J. Numer. Methods Heat Fluid Flow, 2014, 24: 468
doi: 10.1108/HFF-08-2012-0185
11 Zhang S L, Johnson D R, Krane M J M. Influence of riser design on macrosegregation in static castings [J]. Int. J. Cast Met.Res., 2015, 28: 28
12 Ling K, Tao W Q. A sharp-interface model coupling VOSET and IBM for simulations on melting and solidification [J]. Comput. Fluids, 2019, 178: 113
doi: 10.1016/j.compfluid.2018.08.027
13 Wang T M, Yao S, Zhang X G, et al. Modelling of the thermosolutal convection, shrinkage flow and grain movement during globular equiaxed solidification in a multi-phase system I. Three-phase flow model [J]. Acta Metall. Sin., 2006, 42: 584
13 王同敏, 姚 山, 张兴国 等. 等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值模拟I. 三相流模型 [J]. 金属学报, 2006, 42: 584
14 Wang T M, Li T J, Cao Z Q, et al. Modelling of the thermo-solutal convection, shrinkage flow and grain movement during globular equiaxed solidification in a multi-phase system II. Application of model [J]. Acta. Metall. Sin., 2006, 42: 591
14 王同敏, 李廷举, 曹志强 等. 等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值模拟II. 模型的应用 [J]. 金属学报, 2006, 42: 591
15 Li W S, Shen H F, Liu B C. Numerical simulation of macrosegregation in steel ingots using a two-phase model [J]. Int. J. Miner. Metall. Mater., 2012, 19: 787
doi: 10.1007/s12613-012-0629-8
16 Wu M H, Ludwig A. A three-phase model for mixed columnar-equiaxed solidification [J]. Metall. Mater. Trans., 2006, 37A: 1613
17 Wu M, Ludwig A. Modeling equiaxed solidification with melt convection and grain sedimentation I: model description [J]. Acta Mater., 2009, 57: 5621
doi: 10.1016/j.actamat.2009.07.056
18 Wu M, Kharicha A, Ludwig A. Using four-phase Eulerian volume averaging approach to model macrosegregation and shrinkage cavity [J]. Mater. Sci. Eng., 2015, 84: 012006
19 Wu M, Ludwig A, Kharicha A. A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot [J]. Appl. Math. Modell., 2017, 41: 102
doi: 10.1016/j.apm.2016.08.023
20 Li J, Ge H H, Wu M H, et al. A columnar & non-globular equiaxed mixed three-phase model based on thermosolutal convection and grain movement [J]. Acta. Metall. Sin., 2016, 52: 1096
20 李 军, 葛鸿浩, Wu M H 等. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型 [J]. 金属学报, 2016, 52: 1096
21 Ge H H, Ren F L, Li J, et al. Four-phase dendritic model for the prediction of macrosegregation shrinkage cavity and porosity in a 55-ton ingot [J]. Metall. Mater. Trans., 2017, 48A: 1139
22 Ni J, Beckermann C. A volume-averaged two-phase model for transport phenomena during solidification [J]. Metall. Trans., 1991, 22A: 349
23 Cai D, Ren F L, Ge H H, et al. Modelling of inclusion effects on macrosegregation in solidifying steel ingot with a multi-phase approach [J]. Metall. Mater. Trans., 2019, 50A, 1323
24 Xie M Y, Shen H F. Multiphase model for the prediction of shrinkage cavity inclusion and macrosegregation in a 36-ton steel ingot [J]. Front. Mater., 2020, 7: 577290
doi: 10.3389/fmats.2020.577290
25 Ahmadein A, Wu M, Ludwig A. Analysis of macrosegregation formation and columnar-to-equiaxed transition during solidification of Al-4wt.%Cu ingot using a 5-phase model [J]. J. Cryst. Growth, 2015, 417: 65
doi: 10.1016/j.jcrysgro.2014.07.039
26 ANSYS FLUENT 12.0 User's Guide, Copyright © 2009 by ANSYS Inc, April 2009
27 Voller V R, Brent A D, Prakash C. The modelling of heat, mass and solute transport in solidification systems [J]. Int. J. Heat Mass Transfer, 1989, 32: 1719
doi: 10.1016/0017-9310(89)90054-9
28 Voller V R, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems [J]. Int. J. Heat Mass Transfer, 1987, 30: 1709
doi: 10.1016/0017-9310(87)90317-6
29 Voller V R, Swaminathan C R. Eral source-based method for solidification phase change. [J]. Numer. Heat Transfer, 1991, 19B: 175
30 Combeau H, Založnik M, Hans P, et al. Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains [J]. Metall. Mater. Trans., 2009, 40B: 289
31 Ahmad N, Rappaz J, Desbiolles J L, et al. Numerical simulation of macrosegregation: A comparison between finite volume method and finite element method predictions and a confrontation with experiments [J]. Metall. Mater. Trans., 1998, 29A: 617
32 Li J, Wu M, Hao J, alat. Simulation of channel segregation using a two-phase columnar solidification model—Part I: Model description and verification [J]. Comput. Mater. Sci., 2012, 55: 407
doi: 10.1016/j.commatsci.2011.12.037
33 Hebditch D J, Hunt J D. Observations of ingot macrosegregation on model systems [J]. Metall. Trans., 1974, 5B: 1557
34 Suzuki A, Suzuki T, Nagaoka T, et al. On secondary dendrite arm spacing in commercial carbon steels with different carbon content [J]. J. Jpn. Inst. Met. Mater., 1968, 32: 1301
34 鈴木 章, 鈴木 武, 長岡 豊 等. 炭素含有量の異なる炭素鋼の2次デンドライトアームの間隔について [J]. 日本金属学会誌, 1968, 32: 1301
35 Ferreira I L, Spinelli J E, Pires J C, et al. The effect of melt temperature profile on the transient metal/mold heat transfer coefficient during solidification [J]. Mater. Sci. Eng., 2005, A408: 317
36 A Sub-Committee of The Iron and Steel Institute. Report on the heterogeneity of steel ingots [J]. J. Iron Steel Institute, 1926, 103: 39
37 Li J, Wu M H, Ludwig A, et al. Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model [J]. Int. J. Heat Mass Transfer, 2014, 72: 668
doi: 10.1016/j.ijheatmasstransfer.2013.08.079
38 Ge H H, Li J, Han X J, et al. Dendritic model for macrosegregation prediction of large scale castings [J]. J. Mater. Process. Technol., 2016, 227: 308
doi: 10.1016/j.jmatprotec.2015.08.020
[1] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[2] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[3] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[4] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[5] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[6] 李军, 王军格, 任凤丽, 葛鸿浩, 胡侨丹, 夏明许, 李建国. 基于成分均匀化的层状铸造方法的实验与模拟研究[J]. 金属学报, 2018, 54(1): 118-128.
[7] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.
[8] 高翱 王强 李德军 柴海山 赵立佳 赫冀成. 电磁出钢系统中Fe-C合金的状态研究[J]. 金属学报, 2011, 47(2): 219-223.
[9] 赵海东; 吴朝忠; 李元元; 大中逸雄 . 垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟[J]. 金属学报, 2008, 44(11): 1340-1347 .
[10] 王同敏; 李廷举; 曹志强; 金俊泽; T.Grimmig; A.Buhrig-Polaczek; M.Wu; A.Ludwig . 等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值建模 II.模型的应用[J]. 金属学报, 2006, 42(6): 591-598 .
[11] 李中原; 赵九洲 . 平行板型薄板坯连铸结晶器中钢液流动、凝固及溶质分布的三维耦合数值模拟[J]. 金属学报, 2006, 42(2): 211-217 .
[12] 郭大勇; 杨院生; 童文辉; 胡壮麒 . 电磁离心凝固过程中宏观偏析的数值模拟[J]. 金属学报, 2004, 40(3): 275-280 .
[13] 郭大勇; 杨院生; 童文辉; 胡壮麒 . 电磁离心凝固过程中宏观偏析的数值模拟[J]. 金属学报, 2004, 40(3): 275-280 .
[14] 韩志强; 柳百成 . 垂直定向凝固条件下通道偏析形成过程的数值模拟[J]. 金属学报, 2003, 39(2): 140-144 .
[15] 张勤; 崔建忠 . 7075铝合金CREM法半连铸坯中溶质元素的的宏观分布[J]. 金属学报, 2003, 39(12): 1264-1268 .