Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1043-1054    DOI: 10.11900/0412.1961.2024.00060
  研究论文 本期目录 | 过刊浏览 |
时效温度对SiC/Al-Zn-Mg-Cu复合材料时效析出行为的影响
张冉1,2,3, 朱士泽1(), 刘振宇1, 柯于斌3,4(), 王东1, 肖伯律1, 马宗义1
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 散裂中子源科学中心 东莞 523803
4 中国科学院高能物理研究所 北京 100049
Influence of Aging Temperatures on Precipitation Behaviors of SiC/Al-Zn-Mg-Cu Composites
ZHANG Ran1,2,3, ZHU Shize1(), LIU Zhenyu1, KE Yubin3,4(), WANG Dong1, XIAO Bolv1, MA Zongyi1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Spallation Neutron Source Science Center, Dongguan 523803, China
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
引用本文:

张冉, 朱士泽, 刘振宇, 柯于斌, 王东, 肖伯律, 马宗义. 时效温度对SiC/Al-Zn-Mg-Cu复合材料时效析出行为的影响[J]. 金属学报, 2024, 60(8): 1043-1054.
Ran ZHANG, Shize ZHU, Zhenyu LIU, Yubin KE, Dong WANG, Bolv XIAO, Zongyi MA. Influence of Aging Temperatures on Precipitation Behaviors of SiC/Al-Zn-Mg-Cu Composites[J]. Acta Metall Sin, 2024, 60(8): 1043-1054.

全文: PDF(4212 KB)   HTML
摘要: 

SiC/Al-Zn-Mg-Cu复合材料力学性能的提升需要充分理解SiC颗粒的添加对Al基体时效析出行为的影响。但由于受到表征手段的限制,其内在机制尚不明确。本工作结合原位小角中子散射、透射电子显微术和拉伸实验等手段,研究了时效温度(100和160℃)对15%SiC (体积分数)增强Al-7.5Zn-1.8Mg-1.7Cu (质量分数,%)复合材料时效析出行为与沉淀强化机制的影响,并与Al-7.5Zn-1.8Mg-1.7Cu合金进行了对比。结果表明,100℃时效时,随着时效时间由0.5 h延长至3 h,复合材料中的析出相由GPI区演变为GPI区+ GPII区,且尺寸明显增加。但由于该温度下时效动力学缓慢,析出相的体积分数仅略有增加。析出相尺寸和体积分数的增加均可以增大位错切过析出相的阻力,从而提升复合材料的沉淀强化能力。160℃时效温度下时效动力学加速,复合材料中析出相的尺寸和体积分数均随时效时间的延长而增加,析出相类型也由时效0.5 h的GPII区+ η'相演变为时效3 h的η'相+ η相。此时的沉淀强化机制以绕过型为主,尽管析出相体积分数的增加有利于提高复合材料的强度,但其尺寸的增大以及强化能力较差的平衡相η相的出现却会削弱强化效果,因此复合材料的屈服强度随时效时间的延长仅有小幅提高。与Al-7.5Zn-1.8Mg-1.7Cu合金相比,100与160℃时效3 h后复合材料的屈服强度均降低,但相关机制并不相同。100℃时效时2种材料中析出相的类型和尺寸大致相同,但复合材料由于SiC/Al界面反应消耗Mg导致析出相的体积分数减少,从而使得沉淀强化能力减弱。160℃时效时加速的时效动力学补偿了Mg消耗引起的析出相体积分数的减少,但复合材料中较低的空位浓度导致析出相粗化且平衡相η相占比增加,这也会削弱其沉淀强化能力。

关键词 SiC/Al-Zn-Mg-Cu复合材料时效析出行为强化机制小角中子散射    
Abstract

A comprehensive understanding of how the addition of SiC particles influences the precipitation-strengthening behaviors of SiC/Al-Zn-Mg-Cu composites is essential for the advancement of high-performance aluminum matrix composites. However, the intrinsic mechanisms have remained unclear for a long time owing to limited characterization methods. Herein, the effect of aging temperatures (100 and 160oC) on the precipitation behaviors and strengthening mechanisms of SiC/Al-7.5Zn-1.8Mg-1.7Cu (mass fraction, %) composites containing 15%SiC (volume fraction) was investigated using in situ small angle neutron scattering, transmission electron microscopy, and tensile testing. A comparison was also made with the Al-7.5Zn-1.8Mg-1.7Cu alloy. As the aging time extended from 0.5 h to 3 h at 100oC, the precipitates in the composites evolved from GPI zones to GPI zones + GPII zones, accompanied by a noticeable increase in size. However, the increase in the volume fraction of precipitates was not substantial owing to slow aging kinetics. This increase in both the size and volume fraction of precipitates can enhance the resistance to dislocation cutting through precipitates, thereby improving the precipitation-strengthening capacity of the composites. Aging kinetics accelerated at 160oC, leading to an increase in both the size and volume fraction of precipitates in the composites with extended aging time. The types of precipitates transitioned from GPII zones + η' phase at 0.5 h to η' phase + η phase at 3 h. Nevertheless, the primary precipitation-strengthening mechanism at this temperature was dislocation bypassing strengthening. Although the expanding volume fraction of precipitates increased the yield strength of the composites, the coarsening of precipitates and the appearance of equilibrium η phase with inferior strengthening capacity imposed limitations on the yield strength increment. Compared with the Al-7.5Zn-1.8Mg-1.7Cu alloy, the composites exhibited low yield strength after aging at 100 and 160oC for 3 h, albeit with differing mechanisms. During aging at 100oC, the type and size of precipitates in both materials were roughly the same, but the composites had a lower volume fraction of precipitates owing to Mg consumption caused by SiC/Al interface reactions, thus weakening the precipitation-strengthening capacity. Conversely, during aging at 160oC, accelerated aging kinetics compensated for the reduction in precipitates volume fraction caused by Mg consumption. However, a low vacancy concentration led to precipitate coarsening and an increased proportion of equilibrium η phase, further weakening the precipitation-strengthening capacity of the composites.

Key wordsSiC/Al-Zn-Mg-Cu composites    aging precipitation behavior    strengthening mechanism    small angle neutron scattering
收稿日期: 2024-02-29     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2021YFA1600700);国家自然科学基金项目(521932594);国家自然科学基金项目(51931009);国家自然科学基金项目(U22A20114);中国科学院高性能工程材料建制化平台项目(JZHKYPT-2021-01);中国博士后科学基金项目(2023M733573);中国科学院青促会基金项目(2020197)
通讯作者: 朱士泽,szzhu16s@imr.ac.cn,主要从事金属基复合材料研究柯于斌,keyb@ihep.ac.cn,主要从事中子散射技术及其应用研究
Corresponding author: ZHU Shize, Tel: 13998134700, E-mail: szzhu16s@imr.ac.cnKE Yubin, professor, Tel: 15989637569, E-mail: keyb@ihep.ac.cn
作者简介: 张 冉,女,1999年生,博士生
图1  15%SiC/7085Al复合材料在100和160℃不同时效时间段的散射曲线
图2  散射曲线的拟合结果
图3  15%SiC/7085Al复合材料在100℃时效不同时间后析出相的TEM分析
图4  15%SiC/7085Al复合材料在160℃时效不同时间后析出相的TEM分析
图5  15%SiC/7085Al复合材料在100和160℃时效不同时间后的工程应力-应变曲线
Aging temperature / oCAging time / hYS / MPaUTS / MPaEL / %
1000.5362 ± 0.9512 ± 1.67.6 ± 0.4
3424 ± 0.5559 ± 1.56.1 ± 0.3
1600.5374 ± 0.8501 ± 0.57.2 ± 0.3
3403 ± 2.4490 ± 1.25.2 ± 0.1
表1  15%SiC/7085Al复合材料在100和160℃时效不同时间后的拉伸力学性能
Aging temperature / oCMaterialAR1 / nmRs / nmfv / %
100SiC/7085Al0.4031.1390.4591.788
7085Al0.3231.4650.4732.682
160SiC/7085Al0.2659.4352.5053.096
7085Al0.4503.2401.4582.861
表2  100和160℃时效3 h后15%SiC/7085Al复合材料与7085Al合金中析出相的定量信息
图6  7085Al合金在100和160℃时效3 h后析出相的TEM分析
图7  15%SiC/7085Al复合材料中SiC/Al界面的高角环形暗场(HAADF)像及相应的EDS元素分布图

Aging temperature

oC

YS

MPa

UTS

MPa

EL

%

100467 ± 4.1566 ± 3.717.1 ± 0.1
160499 ± 8.4527 ± 9.010.1 ± 0.5
表3  100和160℃时效3 h后7085Al合金的拉伸力学性能
1 Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials [J]. J. Mater. Process. Technol., 2000, 106: 58
2 Ma Z Y, Xiao B L, Zhang J F, et al. Overview of research and development for aluminum matrix composites driven by aerospace equipment demand [J]. Acta Metall. Sin., 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
2 马宗义, 肖伯律, 张峻凡 等. 航天装备牵引下的铝基复合材料研究进展与展望 [J]. 金属学报, 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
3 Li J. The Aluminum matrix composites team of the Institute of Metal Research, Chinese Academy of Sciences, embraces the stars and sea, using new independent and controllable materials for basic and applied linked uses [J]. China High New Technol., 2022, (1): 24
3 李 键. 中国科学院金属研究所铝基复合材料团队 基础应用联动 用自主可控新材料拥抱星辰大海 [J]. 中国高新科技, 2022, (1): 24
4 Nie J H, Fan J Z, Wei S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation [J]. Aeronaut. Manuf. Technol., 2017, 60(16): 26
4 聂俊辉, 樊建中, 魏少华 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用 [J]. 航空制造技术, 2017, 60(16): 26
5 Wang Z T, Tian R Z. Aluminum Alloy and Its Processing Manual [M]. 3rd Ed., Changsha: Central South University Press, 2005: 53
5 王祝堂, 田荣璋. 铝合金及其加工手册 [M]. 第3版. 长沙: 中南大学出版社, 2005: 53
6 Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites [J]. Mater. Charact., 2019, 158: 109966
7 Chen Y T, Zhu S Z, Luo H J, et al. Effects of solution temperatures on microstructures and mechanical properties of B4C/7A04Al composites: A comparison study with 7A04Al alloys [J]. Mater. Sci. Eng., 2024, A890: 145899
8 Liu D M, Xiong B Q, Bian F G, et al. Quantitative study of nanoscale precipitates in Al-Zn-Mg-Cu alloys with different chemical compositions [J]. Mater. Sci. Eng., 2015, A639: 245
9 Hong S I, Gray G T. Microstructure and microchemistry of an Al-Zn-Mg-Cu alloy matrix-20 vol.% SiC composite [J]. Acta Metall. Mater., 1992, 40: 3299
10 Ma W C, Gu J L, Zhang Y, et al. Effect of SiC particles on ageing behaviour of SiCp/7075 composites [J]. J. Mater. Sci. Lett., 1997, 16: 1867
11 Chung T F, Yang Y L, Tai C L, et al. HR-STEM investigation of atomic lattice defects in different types of η precipitates in creep-age forming Al-Zn-Mg-Cu aluminium alloy [J]. Mater. Sci. Eng., 2021, A815: 141213
12 Luo J, Luo H Y, Li S J, et al. Effect of pre-ageing treatment on second nucleating of GPII zones and precipitation kinetics in an ultrafine grained 7075 aluminum alloy [J]. Mater. Des., 2020, 187: 108402
13 Yang W C, Ji S X, Wang M P, et al. Precipitation behaviour of Al-Zn-Mg-Cu alloy and diffraction analysis from η′ precipitates in four variants [J]. J. Alloys Compd., 2014, 610: 623
14 Goyal P S, Aswal V K. Use of SANS and SAXS in study of nanoparticles [J]. Int. J. Nanosci., 2005, 4: 987
15 Tao J Z. China spallation neutron source small-angle scattering spectrometer [J]. Mod. Phys., 2016, 28(1): 18
15 陶举洲. 中国散裂中子源小角散射谱仪 [J]. 现代物理知识, 2016, 28(1): 18
16 De Geuser F, Deschamps A. Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering [J]. C. R. Phys., 2012, 13: 246
17 Yang Y, Liu Y Y, Hu L X, et al. Quantitative study on dynamic instantaneous dissolution of precipitated phases in 2195-T6 Al-Li alloy based on characterizations with SANS and TEM [J]. Acta Mater., 2024, 266: 119689
18 Wang W J, Gong D L, Wang H L, et al. Spinodal decomposition coupled with a continuous crystal ordering in a titanium alloy [J]. Acta Mater., 2022, 233: 117969
19 Guo Y, Wei S H, Yang S, et al. Precipitation behavior of ω phase and ωα transformation in near β Ti-5Al-5Mo-5V-1Cr-1Fe alloy during aging process [J]. Metals, 2021, 11: 273
20 Pedersen J S. Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores [J]. J. Appl. Crystallogr., 2000, 33: 637
21 Dumont M, Lefebvre W, Doisneau-Cottignies B, et al. Characterisation of the composition and volume fraction of η′ and η precipitates in an Al-Zn-Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy [J]. Acta Mater., 2005, 53: 2881
22 Chen J Z, Lv L X, Zhen L, et al. Quantitative characterization on the precipitation of AA 7055 aluminum alloy by SAXS [J]. Acta Metall. Sin., 2017, 53: 897
doi: 10.11900/0412.1961.2016.00559
22 陈军洲, 吕良星, 甄 良 等. AA 7055铝合金时效析出过程的小角度X射线散射定量表征 [J]. 金属学报, 2017, 53: 897
doi: 10.11900/0412.1961.2016.00559
23 Xu X S, Zheng J X, Li Z, et al. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation [J]. Mater. Sci. Eng., 2017, A691: 60
24 Wu L M, Seyring M, Rettenmayr M, et al. Characterization of precipitate evolution in an artificially aged Al-Zn-Mg-Sc-Zr alloy [J]. Mater. Sci. Eng., 2010, A527: 1068
25 Chung T F, Yang Y L, Huang B M, et al. Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy [J]. Acta Mater., 2018, 149: 377
26 Berg L K, Gjønnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J]. Acta Mater., 2001, 49: 3443
27 Tai C L, Pua Y M, Chung T F, et al. The effect of minor addition of Mn in AA7075 Al-Zn-Mg-Cu aluminum alloys on microstructural evolution and mechanical properties in warm forming and paint baking processes [J]. Int. J. Lightweight Mater. Manuf., 2023, 6: 521
28 Chung T F, Yang Y L, Shiojiri M, et al. An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy [J]. Acta Mater., 2019, 174: 351
29 Ke Y B, He C Y, Zheng H B, et al. The time-of-flight small-angle neutron spectrometer at China spallation neutron source [J]. Neutron News, 2018, 29: 14
30 Liu J Z, Chen J H, Yang X B, et al. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy [J]. Scr. Mater., 2010, 63: 1061
31 Ma G N. Fabrication, microstructure and mechanical properties of SiC/Al-Zn-Mg-Cu composites [D]. Hefei: University of Science and Technology of China, 2021
31 马国楠. SiC/Al-Zn-Mg-Cu复合材料的制备、微观组织和力学性能 [D]. 合肥: 中国科学技术大学, 2021
32 Liu J Z. The study on phase transformation of hardening precipitates in Al-Zn-Mg-(Cu) alloys during aging [D]. Changsha: Hunan University, 2014
32 刘吉梓. Al-Zn-Mg-(Cu)合金时效中纳米析出相结构及演变规律研究 [D]. 长沙: 湖南大学, 2014
33 Chen J Z. Aging precipitation behavior and mechanical properties of AA 7055 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2008
33 陈军洲. AA 7055铝合金的时效析出行为与力学性能 [D]. 哈尔滨: 哈尔滨工业大学, 2008
34 Poole W J, Wang X, Lloyd D J, et al. The shearable-non-shearable transition in Al-Mg-Si-Cu precipitation hardening alloys: Implications on the distribution of slip, work hardening and fracture [J]. Philos. Mag., 2005, 85: 3113
35 Lee S H, Jung J G, Baik S I, et al. Precipitation strengthening in naturally aged Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2021, A803: 140719
36 Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [J]. Acta Mater., 2002, 50: 4021
37 Wen H M, Topping T D, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering [J]. Acta Mater., 2013, 61: 2769
38 Zhu S Z, Wang D, Xiao B L, et al. Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al-Mg-Si composites [J]. Composites, 2022, 236B: 109851
39 Zhao H, Ye L Y, Cheng Q S, et al. Effect of variable rate non-isothermal aging on microstructure and properties of Al-Zn-Mg-Cu alloy [J]. Mater. Charact., 2023, 197: 112715
40 Liu J, Liu C Z, Cai H Y, et al. Enhanced precipitate strengthening in particulates reinforced Al-Zn-Mg-Cu composites via bimodal structure design and optimum aging strategy [J]. Composites, 2023, 260B: 110772
[1] 柯于斌, 李彬, 段辉平. 利用小角中子核磁散射分离研究AerMet100钢中纳米析出相的形貌和成分[J]. 金属学报, 2024, 60(8): 1109-1118.
[2] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[3] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[6] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[7] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[8] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[9] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[10] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[11] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[12] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[13] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[14] 李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[15] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.