Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 231-246    DOI: 10.11900/0412.1961.2022.00032
  研究论文 本期目录 | 过刊浏览 |
复合磁场对金属熔体流动及凝固组织的影响
朱锐1, 王俊杰1, 张云虎1(), 田志超2, 苗信成2(), 翟启杰1
1 上海大学 先进凝固技术中心 上海 200444
2 辽宁科技大学 材料与冶金学院 鞍山 114051
Flow and Solidification Microstructure in Metal Melts Driven by a Combined Magnetic Field
ZHU Rui1, WANG Junjie1, ZHANG Yunhu1(), TIAN Zhichao2, MIAO Xincheng2(), ZHAI Qijie1
1 Center for Advanced Solidification Technology, Shanghai University, Shanghai 200444, China
2 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
引用本文:

朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
Rui ZHU, Junjie WANG, Yunhu ZHANG, Zhichao TIAN, Xincheng MIAO, Qijie ZHAI. Flow and Solidification Microstructure in Metal Melts Driven by a Combined Magnetic Field[J]. Acta Metall Sin, 2024, 60(2): 231-246.

全文: PDF(5275 KB)   HTML
摘要: 

近年来,复合电磁场作用下的合金凝固组织得到了相当大的关注。本工作以Ga-20%In-12%Sn和Al-7%Si (质量分数)合金为研究对象,研究了脉冲磁致振荡(PMO)与静磁场形成的复合磁场(CMF)对金属熔体流动和Al-7%Si合金凝固组织的影响规律。数值模拟和流动实验结果表明,CMF作用下平行于静磁场方向流型为单环流,垂直于静磁场方向流型为双环流,这与PMO单独作用下熔体流型为双环流有所不同。通过数值模拟CMF作用下金属熔体中电磁力分布和演变结果给出了其流型形成的原因。此外,凝固实验结果表明,本实验参数下CMF处理后的Al-7%Si合金晶粒尺寸小于仅单独施加PMO时所得晶粒尺寸。最后,在现有电磁场作用下金属凝固细晶机制的基础上,结合感应电流、电磁力和强制流动等效应对其凝固细晶机制进行了探讨。

关键词 脉冲磁致振荡复合磁场熔体流型凝固组织    
Abstract

In recent years, solidified structures in metal alloys driven by combined electromagnetic fields have received considerable attention. In this study, the effect of combined magnetic field (CMF) formed by pulsed magneto oscillation (PMO) and static magnetic field on the melt flow of Ga-20%In-12%Sn (mass fraction) and solidification structure of Al-7%Si alloy was investigated. Results of numerical simulations and flow experiments show that the flow pattern is single rolled in the direction parallel to the static magnetic field and double rolled in the direction perpendicular to the static magnetic field, which is different from the double-rolled flow pattern of the melt when the PMO is activated alone. The distribution and evolution of the electromagnetic forces in the melt under CMF are numerically simulated to explain the formation of the flow pattern. Moreover, the experimental results of solidification show that the grain size of the CMF-treated Al-7%Si alloy is smaller than that obtained when PMO is applied. Finally, the grain refinement mechanism of the Al-7%Si alloy under the influence of electromagnetic fields is discussed in relation to the effects of induced currents, electromagnetic forces, and forced flow based on the previously proposed mechanism of grain refinement in solidified metals driven by electromagnetic fields.

Key wordspulsed magneto-oscillation (PMO)    combined magnetic field (CMF)    melt flow pattern    solidification structure
收稿日期: 2022-01-25     
ZTFLH:  TG290  
基金资助:国家自然科学基金项目(U1760204);国家自然科学基金项目(51974183);宁夏中央引导地方科技发展资金项目(2022FRD05007)
通讯作者: 张云虎,yunhuzhang@shu.edu.cn,主要从事金属凝固细晶研究;
苗信成,miaoxincheng@ustl.edu.cn,主要从事冶金磁流体力学研究
Corresponding author: ZHANG Yunhu, associate professor, Tel: 18701896409, E-mail: yunhuzhang@shu.edu.cn;
MIAO Xincheng, professor, Tel: 15541217108, E-mail: miaoxincheng@ustl.edu.cn
作者简介: 朱 锐,男,1996年生,硕士
图1  磁场测量示意图
图2  脉冲磁致振荡(PMO)电流波形
图3  流场测量示意图
Thermophysical propertyAl-7%SiGa-20%In-12%SnUnit
Liquidus TL61510.5oC
Density ρ24226360kg·m-3
Viscosity υ0.5 × 10-60.34 × 10-6m2·s-1
Electrical conductivity σ3.74 × 1063.27 × 106S·m-1
Relative permeability μr11-
Relative permittivity εr11-
表1  Ga-20%In-12%Sn和Al-7%Si熔体物性参数[7]
图4  PMO模型及CMF模型示意图
图5  静磁场分布测量结果(a) magnetic field strength in x-direction(Bx )(b) magnetic field strength in y-direction(By )(c) magnetic field strength in z-direction(Bz )
图6  PMO (峰值电流强度Ip = 1500 A,脉冲频率f = 30 Hz,脉冲宽度tp = 3 ms)作用下线圈中心处x、y和z方向上磁场强度(Bx 、By 和Bz )测量结果,及线圈中心处z方向上磁场强度实测和模拟结果对比
图7  PMO (Ip = 1500A,f = 30 Hz,tp= 3 ms)作用下线圈中心轴线上Bz 波峰波谷实测和模拟结果对比
图8  不同磁场作用下0.25tp时刻熔体内磁场分布(a) static magnetic field (b) PMO (c) CMF
图9  PMO作用下Ga-20%In-12%Sn熔体流动分布状态(a) schematic of the melt yz center plane(b) melt flow direction in three dimensions (U—flow velocity)(c) z-component of flow velocity (Uz ) in the yz center plane(d) contour of measured flow along the center axis
图10  CMF作用下熔体流动分布状态(a) schematic of yz center plane S1, xz center plane S2, and the direction of the static magnetic field(b) melt flow direction in three dimensions(c) Uz in S1 plane(d) Uz in S2 plane(e) contour of measured flow along the central axis
图11  不同电流峰值的PMO和CMF处理后Al-7Si合金凝固组织
图12  PMO作用下xz平面上Lorentz力(F)分布(a) schematic of the position of point P(b) variation of x-component of Lorentz force (Fx ) at point P with time(c-f) Lorentz force distributions in the xz-plane corresponding to points A-D shown in Fig.12b, respectively
图13  CMF作用下xz平面上Lorentz力分布(a) schematic of the point P and the line L(b) variation of the z-component of Lorentz force (Fz) at point P with time(c-k) Lorentz force distributions in the xz-plane corresponding to points A-I shown in Fig.13b
图14  熔体平均流速(U¯)随时间变化规律
图15  CMF作用下P点流速Uz 与Fz 的关系
图16  电流峰值为2500 A时熔体内感应电流分布
图17  磁场方向、感应电流方向和感应电流环路面积示意图(a) PMO (b) CMF
图18  电流峰值为2500 A时熔体内Lorentz力分布
1 Gao S Y, Le Q C, Zhang Z Q, et al. Effects of Al-Al4C3 refiner and ultrasonic field on microstructures of pure Mg [J]. Acta Metall. Sin., 2010, 46: 1495
1 高声远, 乐启炽, 张志强 等. Al-Al4C3细化剂和超声场对纯Mg组织的影响 [J]. 金属学报, 2010, 46: 1495
doi: 10.3724/SP.J.1037.2010.00230
2 Xiong Y H, Li P J, Yang A M, et al. Effects of foundry variables and refiners on cast structures of superalloy K4169 I. Grain structures and grain refinement mechanisms [J]. Acta Metall. Sin., 2002, 38: 529
2 熊玉华, 李培杰, 杨爱民 等. 铸造工艺参数和细化剂对K4169高温合金铸态组织的影响 Ⅰ. 晶粒组织及晶粒细化机理 [J]. 金属学报, 2002, 38: 529
3 Venkateswarlu K, Das S K, Chakraborty M, et al. Influence of thermo-mechanical treatment of Al-5Ti master alloy on its grain refining performance on aluminium [J]. Mater. Sci. Eng., 2003, A351: 237
4 Tang P, Li W F, Wang K, et al. Effect of Al-Ti-C master alloy addition on microstructures and mechanical properties of cast eutectic Al-Si-Fe-Cu alloy [J]. Mater. Des., 2017, 115: 147
doi: 10.1016/j.matdes.2016.11.036
5 Wei S B, Wang P, Niu Z P, et al. Development of research on grain refiners for aluminum alloys [J]. Foundry Technol., 2013, 34: 89
5 卫少波, 王 璠, 牛志鹏 等. 铝合金晶粒细化剂的研究进展 [J]. 铸造技术, 2013, 34: 89
6 Zhang L, Zhan W, Jin F, et al. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field [J]. Mater. Sci. Technol., 2018, 34: 698
doi: 10.1080/02670836.2017.1410925
7 Räbiger D, Zhang Y H, Galindo V, et al. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents [J]. Acta Mater., 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
8 Zhang Y H, Räbiger D, Eckert S. Solidification of pure aluminium affected by a pulsed electrical field and electromagnetic stirring [J]. J. Mater. Sci., 2016, 51: 2153
doi: 10.1007/s10853-015-9525-8
9 Ma R, Xiang S Q, Zhang X F. Repairing irreversible hydrogen-induced damages using electric current pulse [J]. Int. J. Hydrogen Energy, 2020, 45: 16909
doi: 10.1016/j.ijhydene.2020.04.148
10 Xiang S Q, Zhang X F. Residual stress removal under pulsed electric current [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 281
doi: 10.1007/s40195-019-00941-z
11 Zhang X F, Qin R S. Separation of electrically neutral non-metallic inclusions from molten steel by pulsed electric current [J]. Mater. Sci. Technol., 2017, 33: 1399
doi: 10.1080/02670836.2016.1275451
12 Zhang L M, Liu H N, Li N, et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse [J]. J. Mater. Res., 2016, 31: 396
doi: 10.1557/jmr.2016.17
13 Zhang L M, Li N, Zhang R, et al. Effect of medium-density direct current on dendrites of directionally solidified Pb-50Sn alloy [J]. Mater. Sci. Technol., 2016, 32: 1877
doi: 10.1080/02670836.2016.1149677
14 Zhang L, Guo X, Gao J W, et al. Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel [J]. Acta Metall. Sin., 2020, 56: 1239
14 张 林, 郭 晓, 高建文 等. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响 [J]. 金属学报, 2020, 56: 1239
15 Wu C L, Li D W, Zhu X W, et al. Experimental study of macrostructure and segregation by a novel electromagnetic nozzle swirling flow combined with electromagnetic stirring in continuous casting [J]. Metall. Mater. Trans., 2021, 52B: 1207
16 Zou Q C, Tian H, Zhang Z X, et al. Controlling segregation behavior of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring [J]. Metals, 2020, 10: 1129
doi: 10.3390/met10091129
17 Wang F, Eskin D, Mi J W, et al. A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35Cu alloy induced by ultrasonic melt processing [J]. Acta Mater., 2017, 141: 142
doi: 10.1016/j.actamat.2017.09.010
18 Wang G, Wang Q, Balasubramani N, et al. The role of ultrasonically induced acoustic streaming in developing fine equiaxed grains during the solidification of an Al-2 Pct Cu alloy [J]. Metall. Mater. Trans., 2019, 50A: 5253
19 Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
20 Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
21 Zhao J F, Wang H P, Wei B. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100: 246
doi: 10.1016/j.jmst.2021.07.001
22 Zhao J F, Wang H P, Zou P F, et al. Liquid structure and thermophysical properties of ternary Ni-Fe-Co alloys explored by molecular dynamics simulations and electrostatic levitation experiments [J]. Metall. Mater. Trans., 2021, 52A: 1732
23 Wang D, Li H Q, Zhang X L, et al. The influence of pulse magnetic field intensity on the morphology and electrochemical properties of NiCoS alloys [J]. Surf. Coat. Technol., 2020, 403: 126406
doi: 10.1016/j.surfcoat.2020.126406
24 Li L, Liang W L, Ban C Y, et al. Effects of a high-voltage pulsed magnetic field on the solidification structures of biodegradable Zn-Ag alloys [J]. Mater. Charact., 2020, 163: 110274
doi: 10.1016/j.matchar.2020.110274
25 Shao Q, Kang J J, Xing Z G, et al. Effect of pulsed magnetic field treatment on the residual stress of 20Cr2Ni4A steel [J]. J. Magn. Magn. Mater., 2019, 476: 218
doi: 10.1016/j.jmmm.2018.12.105
26 Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
doi: 10.1016/j.jallcom.2016.07.280
27 Jie J C, Yue S P, Liu J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field [J]. Acta Mater., 2021, 208: 116747
doi: 10.1016/j.actamat.2021.116747
28 Teng Y F, Li Y J, Feng X H, et al. Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field [J]. Acta Metall. Sin., 2015, 51: 844
doi: 10.11900/0412.1961.2014.00692
28 滕跃飞, 李应举, 冯小辉 等. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响 [J]. 金属学报, 2015, 51: 844
29 Zhang K L, Li Y J, Yang Y S. Simulation of the influence of pulsed magnetic field on the superalloy melt with the solid-liquid interface in directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1442
doi: 10.1007/s40195-020-01048-6
30 Zhang Y H, Zhong H G, Zhai Q J. Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields [J]. J. Iron Steel Res., 2017, 29: 249
30 张云虎, 仲红刚, 翟启杰. 脉冲电磁场凝固组织细化和均质化技术研究与应用进展 [J]. 钢铁研究学报, 2017, 29: 249
31 Zi B T, Ba Q X, Cui J Z, et al. Effect of strong pulsed electromagnetic field on metal's solidified structure [J]. Acta Phys. Sin., 2000, 49: 1010
doi: 10.7498/aps
31 訾炳涛, 巴启先, 崔建忠 等. 强脉冲电磁场对金属凝固组织影响的研究 [J]. 物理学报, 2000, 49: 1010
32 Zhang K L, Li Y J, Yang Y S. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169 [J]. J. Mater. Sci. Technol., 2020, 48: 9
doi: 10.1016/j.jmst.2020.02.009
33 Wang B, Yang Y S, Sun M L. Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1685
doi: 10.1016/S1003-6326(09)60358-7
34 Zhou Q, Chen L P, Yin J. Effects of low-voltage pulsed magnetic field and pouring temperature on solidified structure of Al-4.5%Cu alloy [J]. Adv. Mater. Res., 2011, 399-401: 2139
35 Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Mater., 2007, 55: 3103
doi: 10.1016/j.actamat.2007.01.014
36 Li J, Ma J H, Gao Y L, et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes [J]. Mater. Sci. Eng., 2008, A490: 452
37 Gong Y Y, Cheng S M, Zhong Y Y, et al. The solidification technology of pulsed magneto oscillation [J]. Acta Metall. Sin., 2018, 54: 757
doi: 10.11900/0412.1961.2017.00536
37 龚永勇, 程书敏, 钟玉义 等. 脉冲磁致振荡凝固技术 [J]. 金属学报, 2008, 54: 757
38 Gong Y Y, Luo J, Jing J X, et al. Structure refinement of pure aluminum by pulse magneto-oscillation [J]. Mater. Sci. Eng., 2008, A497: 147
39 Xu Z S, Li Q X, Liang Z Y, et al. Morphology of the Al-4.5wt%Cu alloy by pulse magneto oscillation treatment [J]. Shanghai Met., 2015, 37(2): 31
39 徐智帅, 李祺欣, 梁柱元 等. 脉冲磁致振荡下Al-4.5wt%Cu合金微观组织形态 [J]. 上海金属, 2015, 37(2): 31
40 Cheng Y, Xu Z S, Zhou Z, et al. Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel [J]. Shanghai Met., 2016, 38(4): 54
40 程 勇, 徐智帅, 周 湛 等. PMO凝固均质化技术在连铸GCr15轴承钢生产中的应用 [J]. 上海金属, 2016, 38(4): 54
41 Sun J, Sheng C, Wang D P, et al. Influence of pulsed magneto-oscillation on microstructure and mechanical property of rectangular 65Mn steel ingot [J]. J. Iron Steel Res. Int., 2018, 25: 862
doi: 10.1007/s42243-018-0111-6
42 Hua J S, Zhang Y J, Wu C Y. Grain refinement of Sn-Pb alloy under a novel combined pulsed magnetic field during solidification [J]. J. Mater. Process. Technol., 2011, 211: 463
doi: 10.1016/j.jmatprotec.2010.10.023
43 Tan S L, Zhou Q, Zhang S, et al. Effect of compound magnetic field on solidified structure of Mg97Y2Cu1 alloy reinforced by long period ordered structure [J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 1027
43 谭水淋, 周 全, 章 森 等. 复合磁场对Mg97Y2Cu1合金凝固组织的影响 [J]. 特种铸造及有色合金, 2014, 34: 1027
44 Hu S P, Chen L P, Zhou Q, et al. Effects of compound magnetic field of pulsed and alternate field on solidified structure and mechanical properties of AZ31 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 303
44 胡世平, 陈乐平, 周 全 等. 脉冲-交流磁场对AZ31镁合金组织及力学性能的影响 [J]. 特种铸造及有色合金, 2018, 38: 303
doi: 10.15980/j.tzzz.2018.03.020
45 Zhan W, Jin F, Liu X R, et al. Effects of compound magnetic field on microstructure and mechanical properties of the Mg93Zn6Y1 alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 309
45 占 维, 金 帆, 刘栩瑞 等. 复合磁场对Mg93Zn6Y1合金凝固组织和力学性能的影响 [J]. 特种铸造及有色合金, 2018, 38: 309
46 Xu Y Y. Fundmental research on magnetohydrodynamics in secondary cooling zone of round billet continuous casting under the application of PMO [D]. Shanghai: Shanghai University, 2021
46 徐燕祎. PMO在圆坯连铸二冷区中的磁流体力学基础研究 [D]. 上海: 上海大学, 2021
47 Xu Y Y, Zhao J, Ye C Y, et al. Distributions of electromagnetic fields and forced flow and their relevance to the grain refinement in Al-Si alloy under the application of pulsed magneto-oscillation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 254
doi: 10.1007/s40195-021-01242-0
48 Qin R S, Yan H C, He G H, et al. Exploration on the fabrication of bulk nanocrystalline materials by direct nanocrystallizing method I. Nucleation in disordered metallic media by electropulsing [J]. Chin. J. Mater. Res., 1995, 9: 219
48 秦荣山, 鄢红春, 何冠虎 等. 直接晶化法制备块状纳米材料的探索──Ⅰ 脉冲电流作用下无序金属介质的成核理论 [J]. 材料研究学报, 1995, 9: 219
49 Wang B, Yang Y S, Zhou J, et al. Structure refinement of pure Mg under pulsed magnetic field [J]. Mater. Sci. Technol., 2011, 27: 176
doi: 10.1179/174328409X428936
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[3] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[4] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[5] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[6] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[7] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[8] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[9] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[10] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[11] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[12] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[13] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
[14] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[15] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.