|
|
复合磁场对金属熔体流动及凝固组织的影响 |
朱锐1, 王俊杰1, 张云虎1(), 田志超2, 苗信成2(), 翟启杰1 |
1 上海大学 先进凝固技术中心 上海 200444 2 辽宁科技大学 材料与冶金学院 鞍山 114051 |
|
Flow and Solidification Microstructure in Metal Melts Driven by a Combined Magnetic Field |
ZHU Rui1, WANG Junjie1, ZHANG Yunhu1(), TIAN Zhichao2, MIAO Xincheng2(), ZHAI Qijie1 |
1 Center for Advanced Solidification Technology, Shanghai University, Shanghai 200444, China 2 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China |
引用本文:
朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
Rui ZHU,
Junjie WANG,
Yunhu ZHANG,
Zhichao TIAN,
Xincheng MIAO,
Qijie ZHAI.
Flow and Solidification Microstructure in Metal Melts Driven by a Combined Magnetic Field[J]. Acta Metall Sin, 2024, 60(2): 231-246.
1 |
Gao S Y, Le Q C, Zhang Z Q, et al. Effects of Al-Al4C3 refiner and ultrasonic field on microstructures of pure Mg [J]. Acta Metall. Sin., 2010, 46: 1495
|
1 |
高声远, 乐启炽, 张志强 等. Al-Al4C3细化剂和超声场对纯Mg组织的影响 [J]. 金属学报, 2010, 46: 1495
doi: 10.3724/SP.J.1037.2010.00230
|
2 |
Xiong Y H, Li P J, Yang A M, et al. Effects of foundry variables and refiners on cast structures of superalloy K4169 I. Grain structures and grain refinement mechanisms [J]. Acta Metall. Sin., 2002, 38: 529
|
2 |
熊玉华, 李培杰, 杨爱民 等. 铸造工艺参数和细化剂对K4169高温合金铸态组织的影响 Ⅰ. 晶粒组织及晶粒细化机理 [J]. 金属学报, 2002, 38: 529
|
3 |
Venkateswarlu K, Das S K, Chakraborty M, et al. Influence of thermo-mechanical treatment of Al-5Ti master alloy on its grain refining performance on aluminium [J]. Mater. Sci. Eng., 2003, A351: 237
|
4 |
Tang P, Li W F, Wang K, et al. Effect of Al-Ti-C master alloy addition on microstructures and mechanical properties of cast eutectic Al-Si-Fe-Cu alloy [J]. Mater. Des., 2017, 115: 147
doi: 10.1016/j.matdes.2016.11.036
|
5 |
Wei S B, Wang P, Niu Z P, et al. Development of research on grain refiners for aluminum alloys [J]. Foundry Technol., 2013, 34: 89
|
5 |
卫少波, 王 璠, 牛志鹏 等. 铝合金晶粒细化剂的研究进展 [J]. 铸造技术, 2013, 34: 89
|
6 |
Zhang L, Zhan W, Jin F, et al. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field [J]. Mater. Sci. Technol., 2018, 34: 698
doi: 10.1080/02670836.2017.1410925
|
7 |
Räbiger D, Zhang Y H, Galindo V, et al. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents [J]. Acta Mater., 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
|
8 |
Zhang Y H, Räbiger D, Eckert S. Solidification of pure aluminium affected by a pulsed electrical field and electromagnetic stirring [J]. J. Mater. Sci., 2016, 51: 2153
doi: 10.1007/s10853-015-9525-8
|
9 |
Ma R, Xiang S Q, Zhang X F. Repairing irreversible hydrogen-induced damages using electric current pulse [J]. Int. J. Hydrogen Energy, 2020, 45: 16909
doi: 10.1016/j.ijhydene.2020.04.148
|
10 |
Xiang S Q, Zhang X F. Residual stress removal under pulsed electric current [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 281
doi: 10.1007/s40195-019-00941-z
|
11 |
Zhang X F, Qin R S. Separation of electrically neutral non-metallic inclusions from molten steel by pulsed electric current [J]. Mater. Sci. Technol., 2017, 33: 1399
doi: 10.1080/02670836.2016.1275451
|
12 |
Zhang L M, Liu H N, Li N, et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse [J]. J. Mater. Res., 2016, 31: 396
doi: 10.1557/jmr.2016.17
|
13 |
Zhang L M, Li N, Zhang R, et al. Effect of medium-density direct current on dendrites of directionally solidified Pb-50Sn alloy [J]. Mater. Sci. Technol., 2016, 32: 1877
doi: 10.1080/02670836.2016.1149677
|
14 |
Zhang L, Guo X, Gao J W, et al. Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel [J]. Acta Metall. Sin., 2020, 56: 1239
|
14 |
张 林, 郭 晓, 高建文 等. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响 [J]. 金属学报, 2020, 56: 1239
|
15 |
Wu C L, Li D W, Zhu X W, et al. Experimental study of macrostructure and segregation by a novel electromagnetic nozzle swirling flow combined with electromagnetic stirring in continuous casting [J]. Metall. Mater. Trans., 2021, 52B: 1207
|
16 |
Zou Q C, Tian H, Zhang Z X, et al. Controlling segregation behavior of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring [J]. Metals, 2020, 10: 1129
doi: 10.3390/met10091129
|
17 |
Wang F, Eskin D, Mi J W, et al. A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35Cu alloy induced by ultrasonic melt processing [J]. Acta Mater., 2017, 141: 142
doi: 10.1016/j.actamat.2017.09.010
|
18 |
Wang G, Wang Q, Balasubramani N, et al. The role of ultrasonically induced acoustic streaming in developing fine equiaxed grains during the solidification of an Al-2 Pct Cu alloy [J]. Metall. Mater. Trans., 2019, 50A: 5253
|
19 |
Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
|
20 |
Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
|
21 |
Zhao J F, Wang H P, Wei B. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100: 246
doi: 10.1016/j.jmst.2021.07.001
|
22 |
Zhao J F, Wang H P, Zou P F, et al. Liquid structure and thermophysical properties of ternary Ni-Fe-Co alloys explored by molecular dynamics simulations and electrostatic levitation experiments [J]. Metall. Mater. Trans., 2021, 52A: 1732
|
23 |
Wang D, Li H Q, Zhang X L, et al. The influence of pulse magnetic field intensity on the morphology and electrochemical properties of NiCoS alloys [J]. Surf. Coat. Technol., 2020, 403: 126406
doi: 10.1016/j.surfcoat.2020.126406
|
24 |
Li L, Liang W L, Ban C Y, et al. Effects of a high-voltage pulsed magnetic field on the solidification structures of biodegradable Zn-Ag alloys [J]. Mater. Charact., 2020, 163: 110274
doi: 10.1016/j.matchar.2020.110274
|
25 |
Shao Q, Kang J J, Xing Z G, et al. Effect of pulsed magnetic field treatment on the residual stress of 20Cr2Ni4A steel [J]. J. Magn. Magn. Mater., 2019, 476: 218
doi: 10.1016/j.jmmm.2018.12.105
|
26 |
Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
doi: 10.1016/j.jallcom.2016.07.280
|
27 |
Jie J C, Yue S P, Liu J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field [J]. Acta Mater., 2021, 208: 116747
doi: 10.1016/j.actamat.2021.116747
|
28 |
Teng Y F, Li Y J, Feng X H, et al. Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field [J]. Acta Metall. Sin., 2015, 51: 844
doi: 10.11900/0412.1961.2014.00692
|
28 |
滕跃飞, 李应举, 冯小辉 等. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响 [J]. 金属学报, 2015, 51: 844
|
29 |
Zhang K L, Li Y J, Yang Y S. Simulation of the influence of pulsed magnetic field on the superalloy melt with the solid-liquid interface in directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1442
doi: 10.1007/s40195-020-01048-6
|
30 |
Zhang Y H, Zhong H G, Zhai Q J. Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields [J]. J. Iron Steel Res., 2017, 29: 249
|
30 |
张云虎, 仲红刚, 翟启杰. 脉冲电磁场凝固组织细化和均质化技术研究与应用进展 [J]. 钢铁研究学报, 2017, 29: 249
|
31 |
Zi B T, Ba Q X, Cui J Z, et al. Effect of strong pulsed electromagnetic field on metal's solidified structure [J]. Acta Phys. Sin., 2000, 49: 1010
doi: 10.7498/aps
|
31 |
訾炳涛, 巴启先, 崔建忠 等. 强脉冲电磁场对金属凝固组织影响的研究 [J]. 物理学报, 2000, 49: 1010
|
32 |
Zhang K L, Li Y J, Yang Y S. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169 [J]. J. Mater. Sci. Technol., 2020, 48: 9
doi: 10.1016/j.jmst.2020.02.009
|
33 |
Wang B, Yang Y S, Sun M L. Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1685
doi: 10.1016/S1003-6326(09)60358-7
|
34 |
Zhou Q, Chen L P, Yin J. Effects of low-voltage pulsed magnetic field and pouring temperature on solidified structure of Al-4.5%Cu alloy [J]. Adv. Mater. Res., 2011, 399-401: 2139
|
35 |
Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Mater., 2007, 55: 3103
doi: 10.1016/j.actamat.2007.01.014
|
36 |
Li J, Ma J H, Gao Y L, et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes [J]. Mater. Sci. Eng., 2008, A490: 452
|
37 |
Gong Y Y, Cheng S M, Zhong Y Y, et al. The solidification technology of pulsed magneto oscillation [J]. Acta Metall. Sin., 2018, 54: 757
doi: 10.11900/0412.1961.2017.00536
|
37 |
龚永勇, 程书敏, 钟玉义 等. 脉冲磁致振荡凝固技术 [J]. 金属学报, 2008, 54: 757
|
38 |
Gong Y Y, Luo J, Jing J X, et al. Structure refinement of pure aluminum by pulse magneto-oscillation [J]. Mater. Sci. Eng., 2008, A497: 147
|
39 |
Xu Z S, Li Q X, Liang Z Y, et al. Morphology of the Al-4.5wt%Cu alloy by pulse magneto oscillation treatment [J]. Shanghai Met., 2015, 37(2): 31
|
39 |
徐智帅, 李祺欣, 梁柱元 等. 脉冲磁致振荡下Al-4.5wt%Cu合金微观组织形态 [J]. 上海金属, 2015, 37(2): 31
|
40 |
Cheng Y, Xu Z S, Zhou Z, et al. Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel [J]. Shanghai Met., 2016, 38(4): 54
|
40 |
程 勇, 徐智帅, 周 湛 等. PMO凝固均质化技术在连铸GCr15轴承钢生产中的应用 [J]. 上海金属, 2016, 38(4): 54
|
41 |
Sun J, Sheng C, Wang D P, et al. Influence of pulsed magneto-oscillation on microstructure and mechanical property of rectangular 65Mn steel ingot [J]. J. Iron Steel Res. Int., 2018, 25: 862
doi: 10.1007/s42243-018-0111-6
|
42 |
Hua J S, Zhang Y J, Wu C Y. Grain refinement of Sn-Pb alloy under a novel combined pulsed magnetic field during solidification [J]. J. Mater. Process. Technol., 2011, 211: 463
doi: 10.1016/j.jmatprotec.2010.10.023
|
43 |
Tan S L, Zhou Q, Zhang S, et al. Effect of compound magnetic field on solidified structure of Mg97Y2Cu1 alloy reinforced by long period ordered structure [J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 1027
|
43 |
谭水淋, 周 全, 章 森 等. 复合磁场对Mg97Y2Cu1合金凝固组织的影响 [J]. 特种铸造及有色合金, 2014, 34: 1027
|
44 |
Hu S P, Chen L P, Zhou Q, et al. Effects of compound magnetic field of pulsed and alternate field on solidified structure and mechanical properties of AZ31 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 303
|
44 |
胡世平, 陈乐平, 周 全 等. 脉冲-交流磁场对AZ31镁合金组织及力学性能的影响 [J]. 特种铸造及有色合金, 2018, 38: 303
doi: 10.15980/j.tzzz.2018.03.020
|
45 |
Zhan W, Jin F, Liu X R, et al. Effects of compound magnetic field on microstructure and mechanical properties of the Mg93Zn6Y1 alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 309
|
45 |
占 维, 金 帆, 刘栩瑞 等. 复合磁场对Mg93Zn6Y1合金凝固组织和力学性能的影响 [J]. 特种铸造及有色合金, 2018, 38: 309
|
46 |
Xu Y Y. Fundmental research on magnetohydrodynamics in secondary cooling zone of round billet continuous casting under the application of PMO [D]. Shanghai: Shanghai University, 2021
|
46 |
徐燕祎. PMO在圆坯连铸二冷区中的磁流体力学基础研究 [D]. 上海: 上海大学, 2021
|
47 |
Xu Y Y, Zhao J, Ye C Y, et al. Distributions of electromagnetic fields and forced flow and their relevance to the grain refinement in Al-Si alloy under the application of pulsed magneto-oscillation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 254
doi: 10.1007/s40195-021-01242-0
|
48 |
Qin R S, Yan H C, He G H, et al. Exploration on the fabrication of bulk nanocrystalline materials by direct nanocrystallizing method I. Nucleation in disordered metallic media by electropulsing [J]. Chin. J. Mater. Res., 1995, 9: 219
|
48 |
秦荣山, 鄢红春, 何冠虎 等. 直接晶化法制备块状纳米材料的探索──Ⅰ 脉冲电流作用下无序金属介质的成核理论 [J]. 材料研究学报, 1995, 9: 219
|
49 |
Wang B, Yang Y S, Zhou J, et al. Structure refinement of pure Mg under pulsed magnetic field [J]. Mater. Sci. Technol., 2011, 27: 176
doi: 10.1179/174328409X428936
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|