Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 107-116    DOI: 10.11900/0412.1961.2022.00298
  研究论文 本期目录 | 过刊浏览 |
稀土元素LaAlMgSi合金性能和微结构的影响
郑雄1, 赖玉香2(), 向雪梅1, 陈江华2
1 湖南大学 材料科学与工程学院 长沙 410082
2 海南大学 精密仪器高等研究中心 皮米电镜中心 海口 570228
Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys
ZHENG Xiong1, LAI Yuxiang2(), XIANG Xuemei1, CHEN Jianghua2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 Pico Electron Microscopy Center, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou 570228, China
引用本文:

郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
Xiong ZHENG, Yuxiang LAI, Xuemei XIANG, Jianghua CHEN. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. Acta Metall Sin, 2024, 60(1): 107-116.

全文: PDF(4100 KB)   HTML
摘要: 

微合金化是改善铝合金性能及微观结构的有效方法。本工作采用硬度、导电率和拉伸性能测试,以及SEM和TEM等表征分析手段,研究了不同含量La的添加对Al-0.75Mg-0.75Si (质量分数,%)合金性能和微观结构的影响。结果表明,随着La添加量的提高,(1) 合金的塑性和导电率逐渐提高,这是由于La诱导形成的AlSiLa第二相的含量及其溶质原子Si消耗量逐渐增多;(2) 合金的强度先上升后下降,强度的上升主要归因于AlSiLa相的强化作用及晶粒细化作用逐渐增大,强度的下降主要归因于固溶强化作用的减小;(3) 合金人工时效过程中析出相的类型逐渐发生改变:加La合金峰值时效态除形成β″相外,还会析出多晶β″相,而过时效态会析出β″/U2、β′/U2和β′/U2/β″复合相。

关键词 Al-Mg-Si合金微合金化第二相析出相力学性能电子显微镜    
Abstract

The 6xxx series aluminum alloys Al-Mg-Si(-Cu) are widely used in the automotive industry owing to their high strength-to-weight ratio, good formability, and corrosion resistance. Micro-alloying is an effective technique for enhancing the properties and microstructure of Al alloys. The effects of varying La additions on the microstructure and properties of Al-0.75Mg-0.75Si (mass fraction, %) alloy have been investigated using hardness, electrical conductivity, and tensile tests, as well as SEM and TEM. As the La content increases, the following observations are made: (1) the ductility and electrical conductivity of the alloy gradually increase due to the increase in the fraction of the AlSiLa secondary phases induced by the La addition and the amount of Si solute atoms consumed by these phases; (2) the strength of the alloy first increases due to the increase in the secondary-phase strengthening contribution of the AlSiLa phases and the grain refinement contribution, and then decreases owing to the decrease in the solid-solution strengthening contribution; and (3) the types of precipitates formed during aging gradually change; besides the β″ phase, polycrystalline β″ precipitates are also precipitated in the peak-aged alloys with La addition, while β″/U2, β′/U2, and β′/U2/β″ composite precipitates are precipitated in the over-aging condition of the La-added alloys.

Key wordsAl-Mg-Si alloy    micro-alloying    secondary phase    precipitate    mechanical property    electron microscopy
收稿日期: 2022-06-16     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(52001119);国家自然科学基金项目(51831004);国家自然科学基金项目(52171006)
通讯作者: 赖玉香,yxlai123@hainanu.edu.cn,主要从事铝合金微观结构、性能和工艺研究
Corresponding author: LAI Yuxiang, associate professor, Tel: (0898)66275138, E-mail: yxlai123@hainanu.edu.cn
作者简介: 郑 雄,男,1990年生,博士生
AlloyMgSiLaAl
0La0.730.76-Bal.
0.2La0.690.710.22Bal.
0.4La0.720.690.42Bal.
0.6La0.770.710.64Bal.
表1  实验用4种合金的实际成分 (mass fraction / %)
图1  4种合金在180℃人工时效过程中硬度和导电率的变化曲线
图2  4种合金淬火(AQ)态和峰值时效(PA)态的工程应力-应变曲线
AlloyYS / MPaUTS / MPaEl / %Q / MPa
AQPAAQPAAQPAAQPA
0La97.2312.2172.4332.021.64.7372.6432.8
0.2La98.4318.8172.5341.424.57.4378.7471.1
0.4La111.1337.3203.4355.826.09.1415.6499.7
0.6La100.7316.3191.9337.728.210.2409.6489.0
表2  4种合金AQ和PA态的拉伸性能
图3  4种合金PA态的背散射电子(BSE)像和EBSD反极图
图4  4种合金PA态XRD谱和0.4La合金PA态BSE像及第二相EDS结果
图5  4种合金PA态拉伸断口的二次电子(SE)像及相应BSE像
图6  4种合金PA态TEM明场像及析出相长度分布图
图7  Al-Mg-Si合金中3种析出相结构示意图及有无La添加的合金2种时效状态典型析出相的HAADF-STEM像
图8  β″/U2复合相原子分辨率HAADF-STEM像和EDS分析
图9  4种合金AQ态样品的DSC曲线
1 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
2 Pantelakis S G, Alexopoulos N D. Assessment of the ability of conventional and advanced wrought aluminum alloys for mechanical performance in light-weight applications [J]. Mater. Des., 2008, 29: 80
doi: 10.1016/j.matdes.2006.12.004
3 Zandbergen H W, Andersen S J, Jansen J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies [J]. Science, 1997, 277: 1221
doi: 10.1126/science.277.5330.1221
4 Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys [J]. Acta Mater., 1999, 47: 1537
doi: 10.1016/S1359-6454(99)00033-6
5 Chen J H, Costan E, van Huis M A, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys [J]. Science, 2006, 312: 416
pmid: 16627740
6 Vissers R, van Huis M A, Jansen J, et al. The crystal structure of the β' phase in Al-Mg-Si alloys [J]. Acta Mater., 2007, 55: 3815
doi: 10.1016/j.actamat.2007.02.032
7 Chen H N, Lu J B, Kong Y, et al. Atomic scale investigation of the crystal structure and interfaces of the B' precipitate in Al-Mg-Si alloys [J]. Acta Mater., 2020, 185: 193
doi: 10.1016/j.actamat.2019.11.059
8 Andersen S J, Marioara C D, Vissers R, et al. The structural relation between precipitates in Al-Mg-Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2 [J]. Mater. Sci. Eng., 2007, A444: 157
9 Andersen S J, Marioara C D, Frøseth A, et al. Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al-Mg-Si alloy system and its relation to the β' and β" phases [J]. Mater. Sci. Eng., 2005, A390: 127
10 Lai Y X, Jiang B C, Liu C H, et al. Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys [J]. J. Alloys Compd., 2017, 701: 94
doi: 10.1016/j.jallcom.2017.01.095
11 Lai Y X, Fan W, Yin M J, et al. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys [J]. J. Mater. Sci. Technol., 2020, 41: 127
doi: 10.1016/j.jmst.2019.11.001
12 Hirth S M, Marshall G J, Court S A, et al. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016 [J]. Mater. Sci. Eng., 2001, A319-321: 452
13 Jin M, Li J, Shao G J. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy [J]. J. Alloys Compd., 2007, 437: 146
doi: 10.1016/j.jallcom.2006.07.113
14 Xiao Q, Liu H Q, Yi D Q, et al. Effect of Cu content on precipitation and age-hardening behavior in Al-Mg-Si-xCu alloys [J]. J. Alloys Compd., 2017, 695: 1005
doi: 10.1016/j.jallcom.2016.10.221
15 Saito T, Wenner S, Osmundsen E, et al. The effect of Zn on precipitation in Al-Mg-Si alloys [J]. Philos. Mag., 2014, 94: 2410
doi: 10.1080/14786435.2014.913819
16 Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β" phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 78: 245
doi: 10.1016/j.actamat.2014.06.055
17 Jiao N N, Lai Y X, Chen S L, et al. Atomic-scale roles of Zn element in age-hardened AlMgSiZn alloys [J]. J. Mater. Sci. Technol., 2021, 70: 105
doi: 10.1016/j.jmst.2020.09.009
18 Mørtsell E A, Marioara C D, Andersen S J, et al. Effects of germanium, copper, and silver substitutions on hardness and microstructure in lean Al-Mg-Si alloys [J]. Metall. Mater. Trans., 2015, 46A: 4369
19 Mørtsell E A, Andersen S J, Friis J, et al. Atomistic details of precipitates in lean Al-Mg-Si alloys with trace additions of Ag and Ge studied by HAADF-STEM and DFT [J]. Philos. Mag., 2017, 97: 851
doi: 10.1080/14786435.2017.1281461
20 Mørtsell E A, Marioara C D, Andersen S J, et al. The effects and behaviour of Li and Cu alloying agents in lean Al-Mg-Si alloys [J]. J. Alloys Compd., 2017, 699: 235
doi: 10.1016/j.jallcom.2016.12.273
21 Liu Y, Lai Y X, Chen Z Q, et al. Formation of β"-related composite precipitates in relation to enhanced thermal stability of Sc-alloyed Al-Mg-Si alloys [J]. J. Alloys Compd., 2021, 885: 160942
doi: 10.1016/j.jallcom.2021.160942
22 Xiang X M, Lai Y X, Liu C H, et al. Sn-induced modification of the precipitation pathways upon high-temperature ageing in an Al-Mg-Si alloy [J]. Acta Metall. Sin., 2018, 54: 1273
doi: 10.11900/0412.1961.2018.00125
22 向雪梅, 赖玉香, 刘春辉 等. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变 [J]. 金属学报, 2018, 54: 1273
doi: 10.11900/0412.1961.2018.00125
23 Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy [J]. Mater. Sci. Eng., 2009, A516: 42
24 Yao D M, Xia Y M, Qiu F, et al. Effects of La addition on the elevated temperature properties of the casting Al-Cu alloy [J]. Mater. Sci. Eng., 2011, A528: 1463
25 Zheng Q J, Zhang L L, Jiang H X, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47: 142
doi: 10.1016/j.jmst.2019.12.021
26 Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
27 Chang C H, Lee S L, Hsu T Y, et al. Impact of Cu/Mg ratio on thermal stability of hot extrusion of Al-4.6 pct Cu-Mg-Ag alloys [J]. Metall. Mater. Trans., 2007, 38A: 2832
28 Wang T M, Zhao Y F, Chen Z N, et al. The bimodal effect of La on the microstructures and mechanical properties of in-situ A356-TiB2 composites [J]. Mater. Des., 2015, 85: 724
doi: 10.1016/j.matdes.2015.07.031
29 Jiang H X, Li S X, Zheng Q J, et al. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al-Fe alloys [J]. Mater. Des., 2020, 195: 108991
doi: 10.1016/j.matdes.2020.108991
30 Sankaran K K, O'neal J E, Sastry S M L. Effects of second-phase dispersoids on deformation behavior of Al-Li alloys [J]. Metall. Trans., 1983, 14A: 2174
31 Liu G, Zhang G J, Ding X D, et al. The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys [J]. Metall. Mater. Trans., 2004, 35A: 1725
32 Liu G, Zhang G J, Wang R H, et al. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys [J]. Acta Mater., 2007, 55: 273
doi: 10.1016/j.actamat.2006.08.026
33 Nellist P D, Pennycook S J. The principles and interpretation of annular dark-field Z-contrast imaging [J]. Adv. Imaging Electron Phys., 2000, 113: 147
34 Yang W C, Wang M P, Zhang R R, et al. The diffraction patterns from β" precipitates in 12 orientations in Al-Mg-Si alloy [J]. Scr. Mater., 2010, 62: 705
doi: 10.1016/j.scriptamat.2010.01.039
35 Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys [J]. Acta Mater., 2015, 98: 355
doi: 10.1016/j.actamat.2015.07.039
36 Pande C S, Cooper K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials [J]. Prog. Mater. Sci., 2009, 54: 689
doi: 10.1016/j.pmatsci.2009.03.008
37 Zhou S H, Napolitano R E. Phase equilibria and thermodynamic limits for partitionless crystallization in the Al-La binary system [J]. Acta Mater., 2006, 54: 831
doi: 10.1016/j.actamat.2005.10.013
38 Chang C S T, Banhart J. Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2011, 42A: 1960
39 Mahidhara R K. Effect of grain size on the superplastic behavior of a 7475 aluminum alloy [J]. J. Mater. Eng. Perform., 1995, 4: 674
doi: 10.1007/BF02646443
40 Hirata T, Oguri T, Hagino H, et al. Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy [J]. Mater. Sci. Eng., 2007, A456: 344
[1] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[2] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.