Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 968-976    DOI: 10.11900/0412.1961.2022.00362
  研究论文 本期目录 | 过刊浏览 |
Nb3Sn超导线材中Ta层的去除及腐蚀机理
高瞻1,2, 张泽荣2(), 程军胜3, 王秋良2,3()
1 中国科学技术大学 稀土学院 合肥 230026
2 中国科学院赣江创新研究院 赣州 341119
3 中国科学院电工研究所 北京 100190
Removal of Tantalum Layer from Nb3Sn Superconducting Wire and Corrosion Mechanism
GAO Zhan1,2, ZHANG Zerong2(), CHENG Junsheng3, WANG Qiuliang2,3()
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
3 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

高瞻, 张泽荣, 程军胜, 王秋良. Nb3Sn超导线材中Ta层的去除及腐蚀机理[J]. 金属学报, 2024, 60(7): 968-976.
Zhan GAO, Zerong ZHANG, Junsheng CHENG, Qiuliang WANG. Removal of Tantalum Layer from Nb3Sn Superconducting Wire and Corrosion Mechanism[J]. Acta Metall Sin, 2024, 60(7): 968-976.

全文: PDF(2858 KB)   HTML
摘要: 

高质量的超导接头对于超导磁体的建造和后期稳定运行有着关键的作用。然而,针对Nb3Sn线材,常常因为内部Ta阻挡层的存在而影响超导接头的制备。为了探究Nb3Sn超导线材中Ta阻挡层的去除方法,选取内锡法制备的Nb3Sn超导线材为实验对象,研究了线材在HF溶液、HF气氛、HF和H2O2混合溶液以及HF和HNO3混合溶液中的腐蚀行为和特征,利用SEM和OM分析了线材微观结构和腐蚀形貌。结果表明,Ta层在HF和HNO3混合溶液中腐蚀最快,在HF和H2O2混合溶液中次之,在HF气氛中较慢,在HF溶液中最慢。综合腐蚀后效果,采用HF和H2O2混合溶液进行腐蚀是去除Nb3Sn超导线材中Ta阻挡层的最佳方法。同时,选取高纯Ta片为研究对象,分别在上述介质中进行腐蚀实验,并通过OM、XRD和XPS观察和分析试样腐蚀形貌、物相结构变化和腐蚀溶液中的元素价态,揭示了Ta的腐蚀机理,氧化剂的存在可以通过加快Ta表面Ta2O5膜的形成来加快HF对Ta的腐蚀速率。

关键词 Nb3Sn超导线超导接头TaHF腐蚀    
Abstract

High-quality superconducting joints play a key role in the construction and stable operation of superconducting magnets. The preparation of superconducting joints for Nb3Sn wires is often affected by the presence of an internal tantalum barrier layer. Thus, this study examined the effectiveness of different removal methods of the Ta barrier layer in Nb3Sn superconducting wire. For this, the superconducting wire prepared by an internal tin method was considered as the experimental object, and the corrosion behavior and characteristics of the wire in HF solution, HF atmosphere, mixed solution of HF and H2O2, and mixed solution of HF and HNO3 were investigated. The microstructure and corrosion morphology of the wire were analyzed using SEM and OM. Furthermore, high-purity Ta sheets were selected as the research object, and corrosion experiments were carried out in the above-mentioned media. The corrosion morphology, phase structure, and valence state of the elements of the specimens were analyzed using OM, XRD, and X-ray photoelectron spectroscopy (XPS) to reveal the corrosion mechanism of Ta. The results showed that the corrosion of the Ta layer was the fastest in the mixed solution of HF and HNO3, followed by the mixed solution of HF and H2O2, the HF atmosphere, and then the HF solution. Based on the effect after corrosion, the mixed solution of HF and H2O2 was found to be the best method to remove the Ta barrier layer in Nb3Sn superconducting wire. Moreover, the presence of an oxidation agent can accelerate the corrosion rate of Ta by HF by accelerating the formation of Ta2O5 film on the Ta surface.

Key wordsNb3Sn superconducting wire    superconducting joint    Ta    HF corrosion
收稿日期: 2022-07-28     
ZTFLH:  TG172.6  
基金资助:中国科学院赣江创新研究院自主部署项目(E055C003)
通讯作者: 王秋良,qiuliang@gia.cas.cn,主要从事强电磁装备基础理论与工程技术的研究;
张泽荣,zrzhang@gia.cas.cn,主要从事超导接头的制备与研究
Corresponding author: WANG Qiuliang, professor, Tel: 13911367216, E-mail: qiuliang@gia.cas.cn;
作者简介: 高 瞻,男,1995年生,博士生
SampleType of acid solutionCorrosion mode
A1HFPartially immersed
A2HF (atmosphere)Sample is above the liquid level
A3HF + H2O2Completely immersed
A4HF + HNO3Completely immersed
表1  Nb3Sn超导线材在酸溶液中的腐蚀方式
SampleType of acid solutionCorrosion mode
B1HFCompletely immersed
B2HF (atmosphere)Sample is above the liquid level
B3HF + H2O2Completely immersed
B4HF + HNO3Completely immersed
表2  纯Ta片在酸溶液中的腐蚀方式
图1  内锡法制备的Nb3Sn超导线横截面的SEM像和EDS元素分布图
图2  Nb3Sn超导线分层结构横截面的OM像
图3  Nb3Sn超导线材去除Cu稳定层前后横截面的OM像
图4  Nb3Sn超导线材在酸溶液中的腐蚀方式
图5  试样A1经HF溶液腐蚀4 h后的宏观形貌
图6  经不同腐蚀介质腐蚀之后的Nb3Sn超导线试样A1~A4横截面的OM像
图7  裸露Nb丝的Nb3Sn超导线试样
图8  纯Ta片在酸溶液中的腐蚀方式
SampleType of acid solutiont / minv/ (mg·min-1)
B1HF18000.0461
B2HF (atmosphere)14400.0576
B3HF + H2O21100.7545
B4HF + HNO3810.3750
表3  试样B1~B4在不同腐蚀介质中的腐蚀速率
图9  经不同腐蚀介质腐蚀之后的Ta片试样B1~B4表面形貌的OM像
图10  Ta片腐蚀前后的XRD谱
图11  B1试样腐蚀溶液中Ta4f和F1s的XPS
1 Matthias B T, Geballe T H, Geller S, et al. Superconductivity of Nb3Sn [J]. Phys. Rev., 1954, 95: 1435
2 Dietderich D R, Godeke A. Nb3Sn research and development in the USA—Wires and cables [J]. Cryogenics, 2008, 48: 331
3 Lee P J, Larbalestier D C. Microstructural factors important for the development of high critical current density Nb3Sn strand [J]. Cryogenics, 2008, 48: 283
4 Zhou F, Cheng J S, Dai Y M, et al. Research status of superconducting joints preparation [J]. Chin. J. Low. Temp. Phys., 2013, 35: 218
4 周 峰, 程军胜, 戴银明 等. 超导接头制备工艺研究 [J]. 低温物理学报, 2013, 35: 218
5 Parrell J A, Zhang Y Z, Field M B, et al. Development of internal tin Nb3Sn conductor for fusion and particle accelerator applications [J]. IEEE Trans. Appl. Supercond., 2007, 17: 2560
6 Cheng J S, Li L K, Zhou F, et al. Contact resistance properties of cold-pressing superconducting joints [J]. IEEE Trans. Appl. Supercond., 2015, 25: 4300704
7 Li J D, Lin L Z, Han S, et al. The properties of cold-welded joints between multifilamentary Nb3Sn wires [J]. Cryogenics, 1994, 34: 497
8 Liu S Y, Jiang X H, Chai G L, et al. Superconducting joint and persistent current switch for a 7-T animal MRI magnet [J]. IEEE Trans. Appl. Supercond., 2013, 23: 4400504
9 Patel D, Kim S H, Qiu W B, et al. Niobium-titanium (Nb-Ti) superconducting joints for persistent-mode operation [J]. Sci. Rep., 2019, 9: 14287
doi: 10.1038/s41598-019-50549-7 pmid: 31582758
10 Celentano G, Augieri A, Mauretti A, et al. Electrical and mechanical characterization of coated conductors lap joints [J]. IEEE Trans. Appl. Supercond., 2010, 20: 1549
11 Kato J Y, Sakai N, Tajima S, et al. Diffusion joint of YBCO coated conductors using stabilizing silver layers [J]. Physica, 2006, 445-448C: 686
12 Mcintyre P, Wu Y, Liang G, et al. Study of Nb3Sn superconducting joints for very high magnetic field NMR spectrometers [J]. IEEE Trans. Appl. Supercond., 1995, 5: 238
13 Meng J L, Wang H, Sun W S, et al. Study on preparation process parameters of Nb3Sn superconducting joint for high-field magnet [J]. Cryog. Supercond., 2021, 49(8): 1
13 孟建利, 王 晖, 孙万硕 等. 高场磁体Nb3Sn超导接头的制备工艺参数研究 [J]. 低温与超导, 2021, 49(8): 1
14 Ma X P, Wang X Y, Li M X, et al. Improved performances of solid tantalum electrolytic capacitors using EG-treated PEDOT: PSS conducting polymer as cathode electrodes [J]. Chem. Lett., 2016, 45: 717
15 Ernur D, Kondo S, Shamiryan D, et al. Investigation of barrier and slurry effects on the galvanic corrosion of copper [J]. Microelectron. Eng., 2002, 64: 117
16 Kondo S, Sakuma N, Homma Y, et al. Slurry chemical corrosion and galvanic corrosion during copper chemical mechanical polishing [J]. Jpn. J. Appl. Phys., 2000, 39: 6216
17 El-Sayed H A, Birss V I. Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes [J]. Nano Lett., 2009, 9: 1350
doi: 10.1021/nl803010v pmid: 19245238
18 Uehara I, Sakai T, Ishikawa H, et al. The corrosion behavior of tantalum and niobium in hydrobromic acid solutions [J]. Corrosion, 1986, 42: 492
19 Robin A. Corrosion behavior of niobium, tantalum and their alloys in boiling sulfuric acid solutions [J]. Int. J. Refract. Met. Hard Mater., 1997, 15: 317
20 Wang X H, Zheng S L, Xu H B, et al. Leaching of niobium and tantalum from a low-grade ore using a KOH roast-water leach system [J]. Hydrometallurgy, 2009, 98: 219
21 Sood S, Peelamedu R, Sundaram K B, et al. Wet etching of sputtered tantalum thin films in NaOH and KOH based solutions [J]. J. Mater. Sci. Mater. Electron., 2007, 18: 535
22 Guo Y F, Wang R M, Yu S H, et al. High-capacitance thin film tantalum electrolytic capacitor fabricated from electrochemically etched tantalum foils [J]. J. Integr. Technol., 2021, 10: 35
23 Zhang P X, Zhou L, Tang X D, et al. Investigation of multifilamentary Nb3Sn strand for ITER by internal Sn process [J]. Physica, 2006, 445-448C: 819
24 Rowe C E D. The use of tantalum in the process industry [J]. J. Miner. Met. Mater. Soc., 1997, 49: 26
25 Wang J, Jia Z W, Wu J P, et al. Method and apparatus for removal of blocking layer [P]. Chin Pat, 201410257649.1, 2014
25 王 坚, 贾照伟, 武俊萍 等. 阻挡层的去除方法和装置 [P]. 中国专利, 201410257649.1, 2014)
26 El-Sayed H A, Birss V I. Controlled growth and monitoring of tantalum oxide nanostructures [J]. Nanoscale, 2010, 2: 793
doi: 10.1039/c0nr00011f pmid: 20648326
27 Yu H B, Zhu S Y, Yang X, et al. Synthesis of coral-like tantalum oxide films via anodization in mixed organic-inorganic electrolytes [J]. PLoS One, 2013, 8: e66447
[1] 程福来, 罗雪梅, 胡炳利, 张滨, 张广平. 锂离子电池用微米厚度超薄集流体Cu箔和Al箔疲劳强度及损伤行为[J]. 金属学报, 2024, 60(4): 522-536.
[2] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.
[3] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[5] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[6] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[7] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[8] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[9] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[10] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[11] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[12] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[13] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[14] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[15] 宋鹏, 陈榕, 冯晶, 吕建国, 陆建生. 镍基合金表面Pt改性铝化物涂层的初期Al2O3微观结构分析[J]. 金属学报, 2017, 53(11): 1504-1510.