Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 314-324    DOI: 10.11900/0412.1961.2017.00351
  本期目录 | 过刊浏览 |
ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟
种晓宇1,2, 汪广驰1,2, 杜军3, 蒋业华1,2(), 冯晶1,2
1 昆明理工大学材料科学与工程学院 昆明 650093
2 昆明理工大学金属先进凝固成形及装备技术国家地方联合工程实验室 昆明 650093
3 马鞍山钢铁股份有限公司技术中心 马鞍山 243000
Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process
Xiaoyu CHONG1,2, Guangchi WANG1,2, Jun DU3, Yehua JIANG1,2(), Jing FENG1,2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 National Engineering Laboratory of Advanced Metal Solidification/Forming and Technology of Equipment, Kunming University of Science and Technology, Kunming 650093, China
3 Technology Center, Magang (Group) Holding Co., Ltd., Ma'anshan 243000, China
全文: PDF(6993 KB)   HTML
摘要: 

基于有限元分析软件,模拟了在铸造过程中ZTA (ZrO2增韧Al2O3)陶瓷颗粒增强高铬铸铁基(HCCI)复合材料的温度场和热应力。在凝固初期分别以均匀初始温度和非均匀初始温度研究了铸件凝固过程的温度场。充型结束后,当把凝固的初始温度当作不稳定温度场时,更接近实际条件。在研究铸件的温度场过程中,考虑了不同蜂窝形状预制体对温度场的影响。应用了热弹塑性力学模型精确地描述了铸件热应力分布。分别研究了含有不同结构预制体的铸件的热应力,结果表明:热应力会随着预制体孔的边数的增加而逐渐减小。最后预测了热裂纹缺陷,优化了落砂工艺参数。模拟结果和实验结果高度吻合。

关键词 ZTAp/高铬铸铁复合材料传热温度场热应力数值模拟    
Abstract

As advanced wear-resistant materials, it is important to promote the process and application of high chromium cast iron (HCCI) matrix composite reinforced by zirconia toughened alumina ceramic particles (ZTAp/HCCI composite). For the purpose of wider applications of this kind of composite, it is urgent to optimize the process parameters of casting process for it. Based on the finite element software the temperature field and thermal stress in ZTAp/HCCI composite during casting process were simulated. The temperature fields of castings are investigated using the uniform initial temperature and the non-uniform initial temperature at the beginning of solidification. It is more appropriate to the actual situation at the end of mold filling process when the initial temperature of solidification is considered as an unstable temperature field. The influence from performs with different honeycomb shapes is considered in the calculations of temperature fields of castings. In this work, the thermo-elastic plastic model was used to accurately describe the thermal stress in the castings with different honeycomb shapes of preforms, and the results indicate that the thermal stress in them decreases with the increase of edge number of holes in preforms. Finally, the hot crack in castings is predicted and the shakeout process is optimized. It is concluded that the simulated results are in good agreement with the experimental results.

Key wordsZTAp/HCCI composite    heat transfer    temperature field    thermal stress    numerical simulation
收稿日期: 2017-08-24     
基金资助:国家自然科学基金项目Nos.51571103和51561018
作者简介:

作者简介 种晓宇,男,1989年生,博士

引用本文:

种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process. Acta Metall Sin, 2018, 54(2): 314-324.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00351      或      https://www.ams.org.cn/CN/Y2018/V54/I2/314

图1  ZTAp/HCCI复合材料的实际铸件和ZTA陶瓷预制体的形貌
图2  根据实际铸造条件设计的ZTAp/HCCI复合材料的实体模型
图3  具有不同形状孔的预制体示意图
Temperature / ℃ E / GPa ν α / (10-5-1)
25 205 0.291 0
400 179 0.305 1.295
700 140 0.316 1.386
1000 108 0.345 1.309
1300 0 0.500 2.370
1570 0 0.500 2.675
表1  高铬铸铁的力学性能
Temperature / ℃ E / GPa ν α / (10-5-1)
25 3.00 0.245 0
700 2.95 0.248 0.90
1300 2.82 0.252 0.91
1570 2.75 0.258 0.92
表2  ZTA陶瓷预制体的力学性能
图4  包含预制体的铸件截面的温度场变化
图5  充型结束后浇注系统的整体温度分布
图6  铸件与砂型内壁之间的对流换热系数
图7  不同初始温度条件下不同时刻的凝固过程温度场
图8  不同初始温度条件下具有不同孔结构的预制体铸件的温度场分布
图9  砂型的温度分布
图10  预制体中孔的形状对铸件热应力的影响
图11  14400 s时刻铸件的温度场和实际铸件中的裂纹
图12  落砂后铸件中预制体区域的热应力场
[1] Tang S L, Gao Y M, Li Y F, et al.Preparation and interface investigation of Fe/Al2O3P composite activated by Ni and Ti[J]. Adv. Eng. Mater., 2016, 18: 1913
[2] Zhou M J, Jiang Y H, Chong X Y. Interface transition layer interaction mechanism for ZTAP/HCCI composites [J]. Sci. Eng. Compos. Mater., 2017.
[3] Zhao S M, Zhang X M, Zheng K H, et al.Fabrication of ZTA/high chromium cast iron matrix composites and its abrasive wear resistant[J]. J. Foundry Technol., 2011, 32: 1673(赵散梅, 张新明, 郑开宏等. ZTA/高铬铸铁基复合材料的制备及磨损性能研究[J]. 铸造技术, 2011, 32: 1673)
[4] Fu X J, Liao D M, Zhou J X, et al.Bidirectional coupled simulation for casting thermal stress based on ANSYS[J]. J. Casting, 2011, 60: 1103(傅显钧, 廖敦明, 周建新等. 基于ANSYS的铸造过程热应力双向耦合模拟[J]. 铸造, 2011, 60: 1103)
[5] Sun L Y.Numerical simulation of casting thermal stress based on ANSYS and inte CAST [D]. Wuhan: Huazhong University of Science and Technology, 2013(孙凌宇. 基于华铸CAE/ANSYS数值模拟集成系统的铸造热应力分析 [D]. 武汉: 华中科技大学, 2013)
[6] Jiao Y N, Liu B C.Simulation of metal solidification using a coupling macroscopic heat transfer and Monte Carlo method [A]. The 5th Asian Foundry Conference[C]. Nanjing, 1998, 5: 11
[7] Shi D L, Zhu J X.Numerical simulation of stress in quenching-cool process[J]. Hot Work Technol., 2007, 36: 79(史东丽, 朱菊香. 淬火过程应力场的计算机模拟[J]. 热加工工艺, 2007, 36: 79)
[8] Liu Y, Qin S W, Zuo X W, et al.Finite element simulation and experimental verification of quenching stress in fully through-hardened cylinders[J]. Acta Metall. Sin., 2017, 53: 733(刘玉, 秦盛伟, 左训伟等. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53: 733)
[9] Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394)
[10] Wang X, Hu L, Chen D X, et al.Effect of martensitic transformation on stress evolution in multi-pass butt-welded 9%Cr heat-resistant steel pipes[J]. Acta Metall. Sin., 2017, 53: 888(王学, 胡磊, 陈东旭等. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53: 888)
[11] Li Q, Wang Z X, Xie S Y.Research on the development of mathematical model of the whole process of electroslag remelting and the process simulation[J]. Acta Metall. Sin., 2017, 53: 494(李青, 王资兴, 谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53: 494)
[12] Han S W, Shi D Q, Yang X G, et al.Computational study on microstructure-sensitive high cycle fatigue dispersivity[J]. Acta Metall. Sin., 2016, 52: 289(韩世伟, 石多奇, 杨晓光等. 微结构相关的高循环疲劳分散性计算方法研究[J]. 金属学报, 2016, 52: 289)
[13] Giunta G, De Pietro G, Nasser H, et al.Carrera E, Petrolo M. A thermal stress finite element analysis of beam structures by hierarchical modeling[J]. Composites, 2016, 95B: 179
[14] Liu P F, Gu Z P, Yang Y H, et al.A nonlocal finite element model for progressive failure analysis of composite laminates[J]. Compos.: Eng., 2016, 86B: 178
[15] Sun Z, Shi S S, Guo X, et al.On compressive properties of composite sandwich structures with grid reinforced honeycomb core[J]. Composites, 2016, 94B: 245
[16] Gu DD, He B B.Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy[J]. Comp. Mater. Sci., 2016, 117: 22
[17] Burlayenko V N, Altenbach H, Sadowski T, et al.Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate[J]. Comp. Mater. Sci., 2016, 116: 11
[18] Qi F G, Ding H M, Wang X L, et al.The stress and strain field distribution around the reinforced particles in Al/TiC composites: A finite element modeling study[J]. Comput. Mater. Sci., 2017, 137: 297
[19] Park H K, Jung J, Kim H S.Three-dimensional microstructure modeling of particulate composites using statistical synthetic structure and its thermo-mechanical finite element analysis[J]. Comput. Mater. Sci., 2017, 126: 265
[20] Yin T T, Wang Y, He L H, et al.Stress and damage development in the carbonization process of manufacturing carbon/carbon composites[J]. Comput. Mater. Sci., 2017, 138: 27
[21] Du J, Chong X Y, Jiang Y H, et al.Numerical simulation of mold filling process for high chromium cast iron matrix composite reinforced by ZTA ceramic particles[J]. Int. J. Heat Mass Transfer, 2015, 89: 872
[22] Zhang H S, Hu R X, Kang S T.Finite Element Analysis for ANSYS12.0 from Entry to Proficient [M]. Beijing: Mechanical Industry Press, 2010: 10(张红松, 胡仁喜, 康士廷. ANSYS 12.0有限元分析从入门到精通 [M]. 北京: 机械工业出版社, 2010: 10)
[23] Nan J P.Numerical simulation of sodium silicate sand casting process for turbine blade [D]. Changsha: Central South University, 2011(南江鹏. 水轮机叶片的水玻璃砂型铸造过程数值模拟研究 [D]. 长沙: 中南大学, 2011)
[24] Zhao H D, Liu B C.Modeling of stable and meta-stable eutectic transformation of spheroidal graphite iron casting[J]. ISIJ Int., 2001, 41: 986
[25] Ren F H, Dang J Z, Mao H K.ANSYS simulation of stress field during quenching process for circular shear blade of CrMn steel[J]. Hot Work Technol., 2007, 36: 88(任凤华, 党惊知, 毛红奎. CrMn钢圆刀片淬火应力场ANSYS模拟[J]. 热加工工艺, 2007, 36: 88)
[26] Owusu Y A.Physical-chemistry study of sodium silicate as a foundry sand binder[J]. Adv. Colloid Interface Sci., 1982, 18: 57
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[4] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[5] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[6] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[7] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[8] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[9] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[10] 何卫锋, 李翔, 聂祥樊, 李应红, 罗思海. 钛合金薄壁构件激光冲击残余应力稳定性研究[J]. 金属学报, 2018, 54(3): 411-418.
[11] 吴士平, 王汝佳, 陈伟, 戴贵鑫. 振动过程的数值模拟在金属凝固中应用的研究进展[J]. 金属学报, 2018, 54(2): 247-264.
[12] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[13] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[14] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[15] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.