金属学报, 2024, 60(1): 69-79 DOI: 10.11900/0412.1961.2022.00315

研究论文

非均质Mn分布对淬火-配分钢微观组织和力学性能的影响

张超1, 熊志平,1,2, 杨德振1, 程兴旺1,2

1 北京理工大学 材料学院 冲击环境材料技术国家级重点实验室 北京 100081

2 北京理工大学 唐山研究院 唐山 063000

Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels

ZHANG Chao1, XIONG Zhiping,1,2, YANG Dezhen1, CHENG Xingwang1,2

1 National Key Laboratory of Science and Technology on Materials under Shock and Impact, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

2 Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China

通讯作者: 熊志平,zpxiong@bit.edu.cn,主要从事先进钢铁材料的开发与研究

责任编辑: 毕淑娟

收稿日期: 2022-06-24   修回日期: 2022-08-11  

基金资助: 国家自然科学基金项目(52271004)
国家自然科学基金项目(51901021)
北京理工大学科技创新计划创新人才科技专项计划项目(2019CX01019)

Corresponding authors: XIONG Zhiping, associate professor, Tel:(010)68912490, E-mail:zpxiong@bit.edu.cn

Received: 2022-06-24   Revised: 2022-08-11  

Fund supported: National Natural Science Foundation of China(52271004)
National Natural Science Foundation of China(51901021)
Science and Technology Innovation Project of Beijing Institute of Technology(2019CX01019)

作者简介 About authors

张 超,男,1992年生,博士生

摘要

目前,基于非均质高温奥氏体来调控先进高强钢的组织和性能,引起研究学者的广泛关注。为进一步明晰合金元素非均质程度对组织和性能的影响,指导先进高强钢的设计,本工作采用以Mn配分的珠光体为初始组织的快速淬火-配分工艺,研究了奥氏体化时间和温度对高温奥氏体中非均质Mn分布的影响规律,进一步探讨了微观组织和力学性能的演变。结果表明,高温奥氏体的Mn分布能够调控淬火过程的马氏体转变。当高温奥氏体继承了珠光体中富Mn渗碳体和贫Mn铁素体中的Mn分布时,淬火后可获得富Mn片状残余奥氏体与贫Mn马氏体板条构成的鬼珠光体组织。随奥氏体化保温时间的延长和温度的升高,高温奥氏体中Mn元素非均质程度减弱,导致鬼珠光体组织减少,块状残余奥氏体和粗大板条马氏体数量增多、且尺寸增大。随着保温时间的延长,屈服强度由于细晶强化的减弱而降低;均匀延伸率由于块状残余奥氏体的增多而升高,颈缩后的延伸率因块状残余奥氏体形成的脆性马氏体而降低。由于残余奥氏体和马氏体的含量随着奥氏体化工艺不发生改变,使得抗拉强度和断裂总延伸率也不发生变化。由此可见,通过改变奥氏体化的工艺参数,能够在保证高抗拉强度(约1700 MPa)和高断裂总延伸率(约20%)的基础上,实现对屈服强度和均匀延伸率的进一步调控。

关键词: 非均质组织; Mn配分; 珠光体; 残余奥氏体; 高温奥氏体

Abstract

The ever increasing demand for safe and lightweight steel has promoted the development of advanced high-strength steel (AHSS). Recently, many AHSSs have been developed through chemical heterogeneity, resulting in microstructure refinement and mechanical property optimization. Although many efforts emphasize the construction of Mn-heterogeneous high-temperature austenite (γ-Fe), the influence of Mn-heterogeneous distribution remains unclear. In this work, different austenitization times and temperatures are applied to Mn-partitioned pearlite, followed by the same quenching and partitioning process. The effect of Mn distribution in high-temperature austenite on the microstructural evolution and mechanical properties is systematically investigated. Results show that the Mn-heterogeneous high-temperature austenite can tailor the austenite-to-martensite transformation during quenching. The Mn-depleted austenite is then readily transformed into lath martensite, and the Mn-enriched austenite is mainly retained as film roughness (RA), both of which assemble the ghost pearlite. With an increase in austenitization time and temperature, the Mn atom diffusion from the Mn-enriched austenite (originated from cementite lamellae) to the Mn-depleted one (originated from ferrite lamellae) increases, leading to the decreased chemical heterogeneity in high-temperature austenite. Thus, the fraction of ghost pearlite decreases while the fraction and size of blocky RA and coarse lath martensite increase. A wider lath martensite lowers the strength of the yield or the elastic limit of steel. The increased fraction and size of blocky RA ensure an increased uniform elongation by transformation-induced plasticity effect, whereas the transformation product (i.e., fresh martensite) is detrimental to the post-uniform elongation. Meanwhile, because the fractions of RA and martensite hardly change with austenitization condition, the ultimate tensile strength (about 1700 MPa) and total elongation (about 20%) are relatively constant. Therefore, tuning the Mn distribution in high-temperature austenite provides an effective strategy to tailor yield strength and uniform elongation while maintaining large ultimate tensile strength and total elongation.

Keywords: heterogeneous microstructure; Mn partition; pearlite; retained austenite; high-temperature austenite

PDF (5673KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79 DOI:10.11900/0412.1961.2022.00315

ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. Acta Metallurgica Sinica, 2024, 60(1): 69-79 DOI:10.11900/0412.1961.2022.00315

汽车领域的轻量化和安全性需求,推动了先进高强钢的发展。截至目前,已发展出淬火-配分钢、中锰钢和纳米贝氏体钢等第三代先进高强钢,其具有优秀的强塑性匹配,典型特征为拥有残余奥氏体在内的多相组织,其中残余奥氏体能够通过相变诱导塑性(TRIP)效应同时提高材料的强度与塑性。残余奥氏体的TRIP效应与其稳定性密切相关,主要取决于残余奥氏体的化学成分、晶粒尺寸、形貌、晶体取向以及相邻相等[1~4]。然而,目前对残余奥氏体稳定性的调控手段相对有限,难以兼顾残余奥氏体的化学稳定性和细小晶粒尺寸,尤其是对合金元素的利用程度相对较低[5~7]

近年来,通过构建非均质Mn分布的高温奥氏体[8~10],调控淬火阶段的相变过程,改善残余奥氏体稳定性,从而优化力学性能,引起了研究学者的广泛关注。Ding等[8]首先通过临界退火,在Fe-0.18C-8.0Mn (质量分数,%,下同)合金中获得富Mn的残余奥氏体和贫Mn的铁素体;然后,结合快速奥氏体化处理,利用Mn元素缓慢扩散和奥氏体快速相变间的动力学失配,成功构建了非均质Mn分布的高温奥氏体;最后,淬火到室温获得了亚微米尺寸的富Mn块状残余奥氏体,在保证良好塑性的同时大幅提高了抗拉强度。Sun等[9]通过珠光体转变制备了富Mn渗碳体和贫Mn铁素体,再利用快速加热在高温奥氏体中保留了渗碳体与铁素体间Mn元素的非均质分布,淬火后获得了残余奥氏体片层和马氏体板条交替堆叠的鬼珠光体组织。Kim等[10]借助660℃退火24 h,在Fe-0.18C-3.5Mn-0.1Si合金中获得了富Mn碳化物、富Mn残余奥氏体和贫Mn铁素体,然后利用快速加热构造了非均质Mn分布的高温奥氏体,淬火后获得了细小富Mn残余奥氏体,实现了强度和塑性的同步提升。

然而,这些研究主要集中在构建非均质高温奥氏体,关于合金元素(Mn)的非均质程度对组织和性能影响的研究有限。本文作者[11]在前期研究中采用珠光体为初始组织结合快速淬火-配分工艺,通过构建高温奥氏体Mn元素的非均质分布,兼顾了残余奥氏体的高体积分数与以片层形貌为主,提高了试样的局部成形能力,但也未研究高温奥氏体的Mn元素不均匀程度对组织和性能的影响。因此,本工作采用以珠光体为初始组织的快速淬火-配分工艺,通过调控奥氏体化工艺的参数,构建具有不同Mn元素非均质程度的高温奥氏体,从而研究非均质Mn分布对淬火-配分钢微观组织和力学性能的影响机理。

1 实验方法

实验用钢的化学成分(质量分数,%)为:C 0.42,Si 1.45,Mn 3.71,Fe余量。首先用25 kg 真空冶炼炉冶炼铸锭,然后于Ar气保护下在1200℃均匀化处理36 h,最后在900℃热轧至7 mm。如图1所示,将热轧试样加热至800℃保温600 s后,转移至590℃的盐浴炉中保温6 h,进行珠光体转变,再进行水淬。将获得的珠光体试样通过盐浴炉快速加热(约 80℃/s)至770~790℃保温10~1200 s进行奥氏体化,然后通过110℃的油浴进行淬火60 s,再迅速转移至另一个400℃的盐浴炉中保温500 s进行配分处理,最后水淬。为方便叙述,将上述以Mn配分珠光体为初始组织的淬火-配分(partitioned pearlite-based quenching & partitioning,PPQ&P)工艺,根据奥氏体化温度(TA)和时间(tA)编号为PPQ&P TA-tA,如PPQ&P 770-10。

图1

图1   以Mn配分珠光体为初始组织的淬火-配分工艺示意图

Fig.1   Heat treatment schematic for partitioned pearlite-based quenching and partitioning (PPQ&P) process (WQ—water quench)


通过SUPRA55场发射扫描电子显微镜(SEM)观察热处理实验后试样的显微组织。采用Talos F200X透射电子显微镜(TEM)观察试样精细显微组织,并通过配套的能谱仪(TEM-EDS)分析元素分布。为避免轻质元素C对测定结果的干扰,通过计算Mn元素占置换位置的百分数(U-fraction)来表示Mn含量,即UMn = XMn / (XMn + XFe + XSi) (其中,XMnXFeXSi代表Mn、Fe和Si的原子分数)[9,12]。用配备NordlysNano探头的Merlin型SEM,通过透射电子束Kikuchi衍射(TKD)以15 nm的步长进一步分析TEM样品的薄区。采用D8 Advance X射线衍射仪(XRD)对试样中的残余奥氏体(retained austenite,RA)进行定量分析,所使用靶材为Cu靶,扫描速率为0.3°/min,扫描角度(2θ)为40°~120°。

利用线切割切取标距段长度为8 mm、宽度为2 mm、厚度为1 mm的拉伸试样,在Instron 5565型万能试验机上以4 × 10-4 s-1的初始应变速率进行单向拉伸力学性能测试。通过 式(1)计算应变硬化指数(n),分析拉伸过程中的加工硬化行为:

n=d(lnσ) / d(lnε)
(1)

式中,σ为真应力,ε为真应变。

2 实验结果

2.1 显微组织

试样在590℃保温6 h后,已完全转变为由铁素体片层((128.6 ± 24.6) nm)和渗碳体片层((13.0 ± 2.8) nm)构成的珠光体组织(图2)。其中,铁素体贫Mn (UMn = (1.6 ± 0.2)%),渗碳体富Mn (UMn= (25.2 ± 2.1)%)。以该珠光体为初始组织,经不同奥氏体化时间、温度处理后的直接淬火样品的微观组织如图3所示。可见,其主要由鬼珠光体组织(ghost pearlite,GP)和正常板条马氏体(martensite,M)组织构成。鬼珠光体组织遗传了珠光体中Mn元素的非均质分布,具有类似珠光体的片层结构,是由残余奥氏体片层和板条马氏体交叠而组成的组织[9,11~14]。随奥氏体化时间的延长或温度的升高,试样中鬼珠光体组织减少,而正常板条马氏体增多,表明高温奥氏体中Mn元素扩散逐渐均匀。因此,改变奥氏体化温度与时间,能够有效调控高温奥氏体中Mn元素的非均质程度。

图2

图2   经590℃保温6 h的珠光体化处理后试样微观组织的SEM、TEM像和Mn元素分布

Fig.2   SEM (a) and TEM (b) images of partitioned pearlite obtained after holding at 590oC for 6 h following austenitization at 800oC for 600 s (Inset shows EDS line scanning, indicating Mn heterogeneity. UMn—Mn fraction at substitutional lattice site)


图3

图3   经不同奥氏体化时间、温度处理后的直接淬火试样微观组织的SEM像

Fig.3   SEM images of microstructures after directly quenching following austenitization at different temperatures and time (M—martensite)

(a) 770oC for 10 s (b) 770oC for 90 s (c) 770oC for 1200 s (d) 790oC for 10 s


以该珠光体组织为初始组织,进行快速淬火-配分处理,所获得的微观组织主要由浅灰色的残余奥氏体和深灰色的回火马氏体(tempered martensite,TM)基体构成,如图4所示。可见,残余奥氏体存在块状和片状2种形貌,马氏体形貌以细小片层为主,仅在部分样品中观测到粗大板条马氏体(图4c)。微观组织可以分为正常淬火-配分区域和鬼珠光体区域。其中,块状残余奥氏体和板条马氏体,与文献[5,15~17]报道的正常淬火-配分组织一致。当在770或790℃奥氏体化保温10 s时(图4ad),样品中存在大量的鬼珠光体组织。随770℃奥氏体化的时间延长,样品中鬼珠光体组织减少,而正常淬火-配分组织增多(图4b)。当770℃奥氏体化保温时间增加至1200 s时,鬼珠光体组织完全消失(图4c)。

图4

图4   经不同奥氏体化时间、温度处理后的淬火-配分试样微观组织的SEM像

Fig.4   SEM images of microstructures of PPQ&P samples after austenitization at different temperatures and time (RA—retained austenite)

(a) 770oC for 10 s (b) 770oC for 90 s (c) 770oC for 1200 s (d) 790oC for 10 s


图5为不同奥氏体化时间、温度处理后的淬火-配分试样的XRD谱。由图可见,快速淬火-配分处理后试样的(111) γ 、(200) γ 、(220) γ 和(311) γ 峰值明显,随770℃奥氏体化时间延长和温度升高,残余奥氏体含量基本不变(约30%,体积分数,下同)。

图5

图5   经不同奥氏体化时间、温度处理后的淬火-配分试样的XRD谱

Fig.5   XRD spectra of PPQ&P samples after austenitization at different temperatures and time


通过Photoshop软件统计不同奥氏体化工艺的淬火-配分试样SEM像,获得了各相含量及晶粒尺寸变化,如图6所示。由图6a可见,当在770℃奥氏体化的时间由10 s延长至1200 s时,鬼珠光体的含量由(81.3 ± 2.7)%迅速降低至(4.1 ± 0.9)%,粗大马氏体的含量从(1.7 ± 0.7)%增加至(17.6 ± 1.9)%,块状残余奥氏体的含量从(9.5 ± 1.3)%增加至(20.2 ± 1.4)%,而残余奥氏体总体积分数仅在 29%~35%之间小幅波动。同时,随保温时间的增加,残余奥氏体和马氏体形貌发生明显的改变,其中块状残余奥氏体的等效圆直径(equivalent circle diameter,ECD)从(0.9 ± 0.3) μm大幅增长至(1.8 ± 0.6) μm,而粗大马氏体的ECD从(1.3 ± 0.4) μm显著增大到(2.2 ± 0.7) μm (图6b)。特别地,在770℃保温1200 s时,部分粗大马氏体的ECD尺寸高达5.1 μm。随着奥氏体化温度从770℃升高到790℃,同样使得鬼珠光体含量降低、块状残余奥氏体增加且尺寸增大、粗大马氏体增多且尺寸增大。

图6

图6   不同奥氏体化时间、温度处理后淬火-配分试样中各相含量及晶粒尺寸变化

Fig.6   Evolution of phase faction (a) and grain size (b) in PPQ&P samples with austenitization temperature and time (ECD—equivalent circle diameter)


图7为通过TEM和TKD技术对PPQ&P 770-10试样中不同区域微观组织及元素分布的精细表征。如图7a所示,鬼珠光体组织由交替堆叠的片状残余奥氏体((58.3 ± 6.3) nm)和马氏体板条((110.9 ± 19.9) nm)组成,残余奥氏体和马氏体板条之间呈Kurdjumov-Sachs取向关系({110} α //{111} γ 、<111> α //<101> γ )。值得注意的是,片状残余奥氏体与马氏体板条之间存在强烈的Mn梯度,见图7a右下角插图,其中片状残余奥氏体富集Mn元素(UMn = (8.7 ± 1.1)%),马氏体板条贫Mn元素(UMn = (2.8 ± 0.3)%)。图7b所示的TKD像进一步证实了鬼珠光体组织是由交替堆叠的片状残余奥氏体和马氏体板条组成的,部分片状残余奥氏体聚结为块状残余奥氏体。另外,图7cd的TEM像与插图选区电子衍射(SAED)花样表明,正常淬火-配分区域中存在块状残余奥氏体(图7c)和马氏体板条间的片状残余奥氏体(图7d),2者与板条马氏体之间的Mn元素呈均匀分布。

图7

图7   PPQ&P 770-10试样中的RA形貌、Mn元素分布、选区电子衍射(SAED)花样和TKD像

Fig.7   Morphologies, Mn distributions along the red lines (insets at the bottom), SAED patterns of the green circles (insets at the top), and TKD phase map of RA in PPQ&P 770-10 sample

(a) ghost pearlite within the conventional martensite matrix (TM—tempered martensite)

(b) TKD phase map corresponding to the rectangle in Fig.7a

(c) blocky RA within the conventional martensite matrix

(d) film RA within the conventional martensite matrix


2.2 力学性能

以珠光体为初始组织的淬火-配分试样,在770℃保温不同时间的工程应力-工程应变曲线如图8a所示,所有试样均呈现连续屈服,力学性能汇总于表1。可见,随着保温的时间由10 s增加至1200 s,抗拉强度(ultimate tensile strength,UTS)变化较小(约1700 MPa),断裂总延伸率(total elongation,TEL)呈小幅波动(约20%),而屈服强度(yield strength,YS)从(1499 ± 9) MPa快速降低至(1247 ± 12) MPa,均匀延伸率(uniform elongation,UEL)从(13.8 ± 1.0)%大幅增加至(16.5 ± 0.2)%,同时颈缩后延伸率从6.9%降低至5.3%。

图8

图8   在770℃保温不同时间的淬火-配分试样的工程应力-工程应变曲线及应变硬化指数曲线

Fig.8   Engineering stress-engineering strain curves (a) and strain hardening exponent (b) of PPQ&P samples after austenitization at 770oC for different time (n—strain hardening exponent, ε—true strain)


表1   在770℃保温不同时间的淬火-配分试样的力学性能

Table 1  Tensile properties of PPQ&P samples after austenitization at 770oC for different time

Time

s

YS

MPa

UTS

MPa

TEL

%

UEL

%

TEL - UEL

%

101499 ± 91719 ± 620.7 ± 1.813.8 ± 1.06.9
901430 ± 41677 ± 2120.1 ± 1.415.0 ± 1.55.1
12001247 ± 121697 ± 221.8 ± 0.416.5 ± 0.25.3

Note: YS—yield strength, UTS—ultimate tensile strength, TEL—total elongation, UEL—uniform elongation.

新窗口打开| 下载CSV


图8b为在770℃保温不同时间的淬火-配分试样的应变硬化指数曲线。由图可见,曲线主要分为3个阶段:第1阶段为快速下降阶段(ε < 0.03),对应于工程应力-应变曲线中的弹塑性过渡区[18],在此期间位错强化占主导地位[19],应变硬化指数明显下降;第2阶段的应变硬化指数波动上升,对应于连续TRIP效应[18,20];第3阶段,应变硬化指数迅速减小,对应TRIP效应基本耗竭[19]

图9是在770℃保温不同时间的淬火-配分试样的拉伸断口形貌,均主要由韧窝和解离刻面组成。如图9a所示,当奥氏体化时间较短时(770℃保温10 s),断口形貌以韧窝为主。随保温时间的延长,韧窝数量减少,而解离刻面尺寸显著增大(图9b)。当770℃奥氏体化时间增加至1200 s时,断口形貌以解离刻面为主(图9c)。

图9

图9   在770℃保温不同时间的淬火-配分试样拉伸断口的SEM像

Fig.9   SEM images of fracture surfaces after austenitization at 770oC for 10 s (a), 90 s (b), and 1200 s (c)


3 分析讨论

3.1 奥氏体化工艺对微观组织的影响

奥氏体化过程分为受置换元素(如Mn)扩散控制和受C元素扩散控制的2种模式,2者的转变温度一般高于奥氏体转变结束温度(Ae3) 20~30℃[21,22]。通过Thermo-calc软件的TCFE8数据库计算出本实验用钢的Ae3= 739℃,由此判断770~790℃处于奥氏体化过程受C元素扩散控制的模式。因此,珠光体转变为奥氏体的速率极快,Mn元素来不及扩散。即便短时保温,依然可以获得原渗碳体处富Mn、原铁素体处贫Mn的非均质高温奥氏体,调控淬火阶段奥氏体向马氏体的转变次序,从而在淬火到110℃时获得片层残余奥氏体和马氏体板条相交叠的鬼珠光体(图7a)。

当奥氏体化保温温度和时间不同时,Mn原子的扩散距离不同,导致高温奥氏体的Mn非均质分布发生变化[8]。Mn原子的平均扩散距离(d)可以根据 式(2)进行计算[1,23]

d=Dt 
(2)

式中,D为扩散系数,m2/s;t为保温时间,s。高温奥氏体中的Mn原子的D可表示为[24]

D=1.78×10-5exp (-Q / (RT))
(3)

式中,Q为扩散激活能,对于体扩散(volume diffusion)和管扩散(pipe diffusion,沿位错的短路扩散)分别为264000和192720 J/mol[1,24,25]T为奥氏体化温度,K;R为摩尔气体常数,取8.314 J/(mol·K)。根据 式(2)和(3),可计算出不同奥氏体化参数下Mn原子的扩散距离(图10a)。当在770℃保温10~90 s和790℃保温10 s时,Mn元素扩散距离短,高温奥氏体很大程度上保留了珠光体中非均质Mn分布,使得原富Mn渗碳体处的高温奥氏体依然富Mn,从而能够稳定至淬火温度(图10b)。随保温时间的延长,Mn元素扩散距离增加,原渗碳体处高温奥氏体的Mn原子不断向原铁素体处高温奥氏体扩散,导致高温奥氏体中的Mn分布逐渐均匀,不足以阻碍马氏体的生长(图10b)。因此,粗大马氏体和块状残余奥氏体含量增加(图6a),且尺寸增大(图6b)。当保温1200 s时,Mn元素管扩散距离高达2182 nm,远大于珠光体片层间距((141.6 ± 26.3) nm),使得高温奥氏体的Mn分布均匀,导致鬼珠光体的含量极低(图6a),整体呈现正常淬火-配分组织。值得注意的是,鬼珠光体组织和正常淬火-配分组织中均存在残余奥氏体,分别以片状和块状为主。因此,残余奥氏体的整体含量表现为随奥氏体化参数的改变而小幅波动(图6a)。如图10b所示,利用奥氏体化过程中Mn元素扩散和奥氏体相变间的动力学失配,通过珠光体初始组织构建的非均质Mn分布高温奥氏体,在淬火过程中富Mn高温奥氏体保持不变,而贫Mn高温奥氏体迅速转变为板条马氏体,因此形成片状残余奥氏体与马氏体板条交替堆叠的鬼珠光体组织。当奥氏体化时间的延长或温度的升高,促使Mn元素逐渐扩散均匀时,将导致以粗大马氏体和块状残余奥氏体为主的正常淬火-配分组织增多。

图10

图10   在770℃保温不同时间的Mn原子扩散距离及淬火-配分工艺组织演变示意图

Fig.10   Diffusion distance of Mn when austenitization at 770℃ for different time (a) and schematics of microstructure evolution with austenitization during PPQ&P process (b) (tA—austenitization time)


进一步地,通过图11所示热膨胀曲线分析非均质Mn分布高温奥氏体对马氏体转变的影响。由杠杆定律(图11a)结合一阶求导(图11b),将马氏体转变过程分为快速转变(fast transformation)和慢速转变(slow transformation) 2个阶段[26]。当保温时间较短时(770℃保温10 s),非均质高温奥氏体的贫Mn区域稳定性低,在淬火过程中迅速转变为马氏体;同时,均质高温奥氏体转变为粗大马氏体。因此,快速转变阶段开始温度高(201℃),且温度区间窄(21℃),转变速度快(一阶导数的绝对值大)。随着鬼珠光体和粗大马氏体的增多,剩余高温奥氏体晶粒得到细化,同时马氏体转变引入位错和静水压,阻碍了马氏体片层的生长,从而生成细小的板条马氏体,对应马氏体转变曲线一阶导数的斜率降低(图11b),进入了宽广的慢速转变温度区间[27]。随保温时间延长至1200 s,Mn元素扩散距离增加,使得贫Mn高温奥氏体的Mn含量升高,导致快速转变阶段开始温度降低(174℃)。同时,高温奥氏体中Mn含量更加分散[28],使得快速转变温度区间拓宽(32℃)。此外,富Mn高温奥氏体的Mn含量下降,对粗大马氏体生长的阻碍效果降低,使得粗大马氏体含量升高(图6a)。

图11

图11   热膨胀曲线推导出的淬火阶段马氏体的转变曲线及一阶导数曲线

Fig.11   Evolution of martensite fraction with quenching temperature deduced from the dilatation curves based on lever rule (a) and first order derivation of the transformation curves in Fig.9a (b) (QT—quenching temperature)


3.2 鬼珠光体对力学性能的影响

随着奥氏体化时间的增加,屈服强度降低(表1)。基于Gao等[29]和HajyAkbary等[30]的研究,淬火-配分钢的屈服强度(σy)按如下公式计算:

σy=σyγVγ+σyαVα
(4)

式中,σyγσyα分别为残余奥氏体和马氏体的屈服强度,VγVα 分别为残余奥氏体和马氏体的体积分数。由于残余奥氏体内的位错密度低,位错强化(σρ)可以忽略[31,32]σyγ主要由纯Fe的内摩擦应力(σ0)[33]、置换固溶强化(σS)和细晶强化组成[29],如 式(5)所示。σyα则由σ0[33]σS和间隙固溶强化(σC) [34,35]、析出强化(σP) [36]、细晶强化[37]σρ[38]组成,如 式(6)所示。

σyγ=σ0+σS+0.46(dγ)-1/2
(5)
σyα=σ0+σρ+σS+σC+σP+86.2(DM)-1
(6)

式中,dγ为奥氏体的晶粒尺寸,DM为马氏体板条宽度。

当在770℃奥氏体化处理的时间由10 s延长至1200 s时,鬼珠光体由(81.3 ± 2.7)%降低至(4.1 ± 1.9)% (图6a),相应的正常淬火-配分组织增加。残余奥氏体尺寸由(58.3 ± 6.3) nm增加至(1.8 ± 0.6) μm,马氏体板条宽度由(110.9 ± 19.9) nm增加至(303.0 ± 25.1) nm,导致残余奥氏体和马氏体的屈服强度分别降低49.4和424.1 MPa;当考虑2者体积分数时,屈服强度分别降低16.9和274.0 MPa。因此,鬼珠光体组织向正常淬火-配分组织的演变,使得屈服强度共降低290.9 MPa。与表1中实验所得的屈服强度降低252 MPa,具有较好的一致性。由此可见,奥氏体化时间的延长造成鬼珠光体含量的降低,引发了残余奥氏体和马氏体的粗化,是导致屈服强度降低的主要原因。随奥氏体化时间的延长,均匀延伸率大幅增加(表1),这主要与残余奥氏体的TRIP效应有关。TRIP效应主要取决于残余奥氏体的稳定性,受化学成分、晶粒尺寸、形貌以及相邻相等的影响[1~4]

图12所示,通过间断拉伸实验来观察残余奥氏体的转变。在200℃回火2 h后,间断拉伸样品中残余奥氏体表面保持光滑(图12a箭头所示),而由残余奥氏体转变的新生马氏体(fresh martensite,FM)表面明显粗糙[39,40] (图12b箭头所示)。当应变较低(≤ 6.9%)时,仅有较大尺寸的块状残余奥氏体发生转变(图12b);当应变增加至13.8%后,所有的块状残余奥氏体都转变为了新生马氏体,而鬼珠光体内的片状残余奥氏体未见转变(图12c)。由此可见,块状残余奥氏体是颈缩前应变硬化的主要来源。随奥氏体化时间的延长,块状残余奥氏体数量增多、尺寸增大(图6ab),促使更多的残余奥氏体在颈缩前发生转变,引发更强烈的TRIP效应,使得应变硬化指数曲线的第2阶段显著提高(图8b),从而导致均匀延伸率增加。

图12

图12   PPQ&P 770-10试样在不同应变下的显微组织

Fig.12   Microstructures of PPQ&P 770-10 sample when the uniaxial tension is interrupted at the strains of 0 (a), 6.9% (b), 13.8% (c), and about 20% (fractured) (d)(FM—fresh martensite. Inset in Fig.12d shows the FM transformed from ghost pearlite)


颈缩后(≥13.8%),试样中仍有大量片状残余奥氏体存在(图12c)。这些片状残余奥氏体在颈缩后,一部分继续发生TRIP效应(图12d),提高变形能力;另一部分始终以残余奥氏体的形式存在,与马氏体协同变形,并能吸收马氏体中的位错,改善马氏体的塑性,即残余奥氏体吸收位错(DARA)效应[41]。因此,鬼珠光体含量越多,颈缩后的延伸率就越大,韧窝数量也越多(图9)。此外,块状残余奥氏体转变生成的新生马氏体为硬脆相[42,43],与周围相的协同变形能力差,加速了非均匀变形段裂纹的扩展[44],产生了断口形貌中的解离刻面,减少了颈缩后延伸率。

4 结论

(1) 通过以珠光体为初始组织的快速淬火-配分工艺,能够获得片层残余奥氏体((58.3 ± 6.3) nm)与马氏体板条((110.9 ± 19.9) nm)相间组成的鬼珠光体组织。奥氏体保温时间延长和温度升高,使得高温奥氏体的Mn分布更加均匀,导致鬼珠光体的含量减少。

(2) 随770℃保温时间的延长,鬼珠光体减少而正常淬火-配分组织增多,使得残余奥氏体和板条马氏体的尺寸增大,细晶强化效果减弱,导致屈服强度降低。

(3) 随770℃保温时间的延长,块状残余奥氏体增多,在变形过程中容易转变,使得加工硬化能力升高,导致均匀延伸率的增加;同时,块状残余奥氏体转变生成的新生块状马氏体为硬脆相,会加速颈缩后裂纹的形成和扩展,导致颈缩后延伸率的降低。

(4) 以珠光体为初始组织的快速淬火-配分工艺,由于残余奥氏体和马氏体的含量不随奥氏体化工艺发生改变,使得抗拉强度和断裂总延伸率也不变;通过改变奥氏体化的工艺参数,能够在保证高抗拉强度(约1700 MPa)和高断裂总延伸率(约20%)的基础上,实现对屈服强度和均匀延伸率的进一步调控。

参考文献

Xiong Z P, Saleh A A, Marceau R K W, et al.

Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel

[J]. Acta Mater., 2017, 134: 1

DOI      URL     [本文引用: 4]

Xiong X C, Chen B, Huang M X, et al.

The effect of morphology on the stability of retained austenite in a quenched and partitioned steel

[J]. Scr. Mater., 2013, 68: 321

DOI      URL    

Xu W, Huang M H, Wang J L, et al.

Review: Relations between metastable austenite and fatigue behavior of steels

[J]. Acta Metall. Sin., 2020, 56: 459

DOI     

With the deepening and improvement of the research on the conventional mechanical properties of metallic materials, the long-term service properties, such as fatigue and creep, showed more and more critical influence on the development of metallic materials. As one of the most important engineering structural materials, in order to clarify the fatigue failure mechanism, the research of steels on the relationship between microstructure and fatigue properties has been a hot and difficult problem for a long time. With the rapid development of smelting technology for steels, the research on the influencing factors of fatigue gradually changes from inclusions to microstructures as metastable austenite, precipitates, etc. Therefore, in order to further analyze the feasible direction of the research on the influence of microstructure on fatigue, this paper summarizes the influence and mechanism of metastable austenite on the fatigue property of advanced steel materials. The influence mechanism of metastable austenite on fatigue property by relevant scholars under different service conditions such as low cycle fatigue and high cycle fatigue was reviewed. Based on the experimental results, the relationship between metastable austenite and fatigue properties was quantitatively evaluated by machine learning. The quantitative relationship between the content/stability of metastable austenite and fatigue life was established, which could provide the basis direction for the further study of the mechanism of fatigue for steels.

徐 伟, 黄明浩, 王金亮 .

综述: 钢中亚稳奥氏体组织与疲劳性能关系

[J]. 金属学报, 2020, 56: 459

Liu M, Hu H J, Tian J Y, et al.

Effect of ausforming on the microstructures and mechanical properties of an ultra-high strength bainitic steel

[J]. Acta Metall. Sin., 2021, 57: 749

DOI      [本文引用: 2]

Ultra-high-strength bainitic steels with excellent combinations of strength and ductility may be the new generation of metallurgical interest. However, there still exist some production problems, such as long transformation times due to low-temperature processing and difficulty in tailoring the elongation. In this work, both ausforming and austempering were used to investigate the effects of deformation on the transformation and microstructure in a medium-carbon bainitic steel. The Gleeble 3500 simulator, SEM, TEM, XRD, and tensile tests were used to analyze the effects of ausforming on retained austenite, the strength and plasticity of bainitic steel. The results show that ausforming at 300oC with a strain of 0.2 not only accelerates the kinetics of isothermal transformation, but also refines the bainitic microstructure and optimizes the retained austenite and its stability. The stability of the retained austenite is affected by the carbon content and dislocation density, and the carbon content can be increased by prolonging the duration of the isothermal stage. The volume fraction of retained austenite is increased by ausforming because of the enhanced dislocation density, which leads to ultra-high-strength bainitic steel with excellent properties of a tensile strength of 1733 MPa and ductility of 15.7%.

刘 曼, 胡海江, 田俊羽 .

变形对超高强贝氏体钢组织和力学性能的影响

[J]. 金属学报, 2021, 57: 749

[本文引用: 2]

Speer J, Matlock D K, De Cooman B C, et al.

Carbon partitioning into austenite after martensite transformation

[J]. Acta Mater., 2003, 51: 2611

DOI      URL     [本文引用: 2]

Caballero F G, Bhadeshia H K D H.

Very strong bainite

[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251

DOI      URL    

Luo H W, Shi J, Wang C, et al.

Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel

[J]. Acta Mater., 2011, 59: 4002

DOI      URL     [本文引用: 1]

Ding R, Yao Y J, Sun B H, et al.

Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels

[J]. Sci. Adv., 2020, 6: eaay1430

DOI      URL     [本文引用: 3]

Chemical boundary engineering expands the dimensionality of alloy design.

Sun W W, Wu Y X, Yang S C, et al.

Advanced high strength steel (AHSS) development through chemical patterning of austenite

[J]. Scr. Mater., 2018, 146: 60

DOI      URL     [本文引用: 3]

Kim J H, Gu G, Kwon M H, et al.

Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite

[J]. Acta Mater., 2022, 223: 117506

DOI      URL     [本文引用: 2]

Zhang C, Xiong Z P, Yang D Z, et al.

Heterogeneous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement

[J]. Acta Mater., 2022, 235: 118060

DOI      URL     [本文引用: 2]

Yang D Z, Xiong Z P, Zhang C, et al.

Effect of tempering time on microstructures and mechanical properties of an Fe-0.39C-3.69Mn medium Mn steel

[J]. J. Iron Steel Res., 2021, 33: 1161

[本文引用: 1]

杨德振, 熊志平, 张 超 .

回火时间对Fe-0.39C-3.69Mn中锰钢的组织和力学性能的影响

[J]. 钢铁研究学报, 2021, 33: 1161

[本文引用: 1]

Cunningham J L, Medlin D J, Krauss G.

Effects of induction hardening and prior cold work on a microalloyed medium carbon steel

[J]. J. Mater. Eng. Perform., 1999, 8: 401

DOI      URL    

Yang D Z, Xiong Z P, Zhang C, et al.

Evolution of microstructures and mechanical properties with tempering temperature of a pearlitic quenched and tempered steel

[J]. J. Iron Steel Res. Int., 2022, 29: 1393

DOI      [本文引用: 1]

Santofimia M J, Zhao L, Petrov R, et al.

Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel

[J]. Acta Mater., 2011, 59: 6059

DOI      URL     [本文引用: 1]

Wang C Y, Shi J, Cao W Q, et al.

Study on the martensite in low carbon CrNi3Si2MoV steel treated by Q&P process

[J]. Acta Metall. Sin., 2011, 47: 718

王存宇, 时 捷, 曹文全 .

Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究

[J]. 金属学报, 2011, 47: 718

Gao P F, Liang J H, Chen W J, et al.

Prediction and evaluation of optimum quenching temperature and microstructure in a 1300 MPa ultra-high-strength Q&P steel

[J]. J. Iron Steel Res. Int., 2022, 29: 307

DOI      [本文引用: 1]

Xiong Z P, Jacques P J, Perlade A, et al.

Characterization and control of the compromise between tensile properties and fracture toughness in a quenched and partitioned steel

[J]. Metall. Mater. Trans., 2019, 50A: 3502

[本文引用: 2]

Shi J, Sun X J, Wang M Q, et al.

Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite

[J]. Scr. Mater., 2010, 63: 815

DOI      URL     [本文引用: 2]

Xu Y T, Li W, Du H, et al.

Tailoring the metastable reversed austenite from metastable Mn-rich carbides

[J]. Acta Mater., 2021, 214: 116986

DOI      URL     [本文引用: 1]

Yang Z N, Enomoto M, Zhang C, et al.

Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel

[J]. Philos. Mag. Lett., 2016, 96: 256

DOI      URL     [本文引用: 1]

Li S, Yang Z N, Enomoto M, et al.

Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy

[J]. Acta Mater., 2019, 177: 198

DOI      URL     [本文引用: 1]

Divinski S V, Hisker F, Kang Y S, et al.

Tracer diffusion of 63Ni in nano-γ-FeNi produced by powder metallurgical method: Systematic investigations in the C, B, and A diffusion regimes

[J]. Interface Sci., 2003, 11: 67

DOI      URL     [本文引用: 1]

Guo Q, Yen H W, Luo H, et al.

On the mechanism of Mn partitioning during intercritical annealing in medium Mn steels

[J]. Acta Mater., 2022, 225: 117601

DOI      URL     [本文引用: 2]

Li Z D, Yang Z G, Zhang C, et al.

Influence of austenite deformation on ferrite growth in a Fe-C-Mn alloy

[J]. Mater. Sci. Eng., 2010, A527: 4406

[本文引用: 1]

Liu L, He B B, Cheng G J, et al.

Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite

[J]. Scr. Mater., 2018, 150: 1

DOI      URL     [本文引用: 1]

Cech R E, Turnbull D.

Heterogeneous nucleation of the martensite transformation

[J]. JOM, 1956, 8: 124

DOI      URL     [本文引用: 1]

Jing S Y, Ding H, Ren Y P, et al.

A new insight into annealing parameters in tailoring the mechanical properties of a medium Mn steel

[J]. Scr. Mater., 2021, 202: 114019

DOI      URL     [本文引用: 1]

Gao G H, Gao B, Gui X L, et al.

Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06-0.42 wt% C)

[J]. Mater. Sci. Eng., 2019, A753: 1

[本文引用: 2]

HajyAkbary F, Sietsma J, Miyamoto G, et al.

Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel

[J]. Mater. Sci. Eng., 2016, A677: 505

[本文引用: 1]

Bouquerel J, Verbeken K, De Cooman B C.

Microstructure-based model for the static mechanical behaviour of multiphase steels

[J]. Acta Mater., 2006, 54: 1443

DOI      URL     [本文引用: 1]

McGuire M F. Stainless Steels for Design Engineers [M]. Materials Park: ASM International, 2008: 74

[本文引用: 1]

Irvine J, Baker T N.

The influence of rolling variables on the strengthening mechanisms operating in niobium steels

[J]. Mater. Sci. Eng., 1984, 64: 123

[本文引用: 2]

Krauss G.

Martensite in steel: Strength and structure

[J]. Mater. Sci. Eng., 1999, A273-275: 40

[本文引用: 1]

Rodriguez RM, Gutiérrez I.

Unified formulation to predict the tensile curves of steels with different microstructures

[J]. Mater. Sci. Forum, 2003, 426-432: 4525

DOI      URL     [本文引用: 1]

Xiong Z P, Timokhina I, Pereloma E.

Clustering, nano-scale precipitation and strengthening of steels

[J]. Prog. Mater. Sci., 2021, 118: 100764

DOI      URL     [本文引用: 1]

Smith D W, Hehemann R F.

Influence of structural parameters on the yield strength of tempered martensite and lower bainite

[J]. J. Iron Steel Inst., 1971, 209: 476

[本文引用: 1]

Taylor G I.

The mechanism of plastic deformation of crystals. Part I.—Theoretical

[J]. Proc. R. Soc, 1934, 145A: 362

[本文引用: 1]

Girault E, Jacques P, Harlet P, et al.

Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels

[J]. Mater. Charact., 1998, 40: 111

DOI      URL     [本文引用: 1]

Xiong Z P, Jacques P J, Perlade A, et al.

Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel

[J]. Scr. Mater., 2018, 157: 6

DOI      URL     [本文引用: 1]

Wang Y, Zhang K, Guo Z H, et al.

A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel

[J]. Acta Metall. Sin., 2012, 48: 641

DOI      [本文引用: 1]

A low carbon Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (mass fraction, %) steel exhibits the combination of high tensile strength and good elongation after treated by a novel quenching-partitioning-tempering (Q-P-T) process. The variation in volume fraction of retained austenite in this steel with strain is measured by XRD, and the deformed twin-type martensite plates are also observed by TEM, from which the transformation induced plasticity (TRIP) effect in this steel is confirmed. Based on the measurement of average dislocation densities in both martensite and retained austenite combined with TEM observation, the effect of dislocation absorption by retained austenite (DARA) is found in the low carbon steel, similar to that in the medium carbon steel proposed recently, from which the generation conditions of DARA effect is proposed, and the mechanism of retained austenite on ductility enhancement of high strength steel is clarified.

王 颖, 张 柯, 郭正洪 .

残余奥氏体增强低碳Q-P-T钢塑性的新效应

[J]. 金属学报, 2012, 48: 641

[本文引用: 1]

Martelo D F, Mateo A, Chapetti M D.

Crack closure and fatigue crack growth near threshold of a metastable austenitic stainless steel

[J]. Int. J. Fatigue, 2015, 77: 64

DOI      URL     [本文引用: 1]

Mei Z, Morris J W.

Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels

[J]. Metall. Trans., 1990, 21A: 3137

[本文引用: 1]

Niendorf T, Rubitschek F, Maier H J, et al.

Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel

[J]. Mater. Sci. Eng., 2010, A527: 2412

[本文引用: 1]

/