Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 826-836    DOI: 10.11900/0412.1961.2022.00162
  研究论文 本期目录 | 过刊浏览 |
Y掺杂Ti膜的吸放氢行为
李聪, 王猛, 屠汉俊, 施立群()
复旦大学 现代物理研究所 上海 200433
Behavior of Hydrogen Absorption and Desorption in Y-doped Ti Films
LI Cong, WANG Meng, TU Hanjun, SHI Liqun()
Institute of Modern Physics, Fudan University, Shanghai 200433, China
引用本文:

李聪, 王猛, 屠汉俊, 施立群. Y掺杂Ti膜的吸放氢行为[J]. 金属学报, 2024, 60(6): 826-836.
Cong LI, Meng WANG, Hanjun TU, Liqun SHI. Behavior of Hydrogen Absorption and Desorption in Y-doped Ti Films[J]. Acta Metall Sin, 2024, 60(6): 826-836.

全文: PDF(2249 KB)   HTML
摘要: 

合金化方法通常被用于改善储氢金属的力学性能,然而这往往会影响材料的储氢性能。为了研究Y掺杂对金属Ti吸放氢的影响,本工作从实验和模拟2方面研究了Ni/Ti-Y合金薄膜的吸放氢特性。采用直流磁控溅射方法制备不同Y掺杂含量的Ti-Y薄膜,并在表面镀一层Ni膜以减少表面污染。吸氘实验发现,Ti薄膜中氘(D)含量随着Y浓度的增加而增大,这是因为替位Y能够结合更多的D,且Y易与O结合可降低Ti被毒化的程度,有利于Ti吸D。密度泛函理论计算表明Y增强了与其相邻的Ti—H 键能,同时产生了较强的Y—H键,导致紧邻Y的H结合能和扩散势垒增大,Ti-Y对H的束缚力增强;氘热释放实验结果显示Ni/Ti-Y体系的D解吸表观活化能高于纯Ni/Ti,说明Y对Ni/Ti-Y体系的氘脱附动力学产生了重要影响。结果表明Y掺杂对Ti薄膜体系的吸放氢性能都产生了一定程度的影响。

关键词 磁控溅射离子束分析密度泛函理论扩散表观活化能    
Abstract

Alloying is often used to improve resistance to hydrogen-induced pulverization and cracking of hydrogen storage materials such as titanium and zirconium. However, it often affects the hydrogen storage performance of the material itself. Ti-Y alloys exhibit good mechanical properties, and they can effectively suppress hydrogen embrittlement. The properties of hydrogen absorption and desorption were investigated experimentally and theoretically in the present work. Y was uniformly doped into Ti films as a substitution atom using direct current magnetron sputtering. In addition, a Ni film of about 5 nm was subsequently deposited onto all sample surfaces to reduce surface contamination. Deuterium gas (D2) was used for hydrogen absorption experiment. Hydrogen absorption results show that the deuterium concentration in Ti-Y films increases with the increase of Y concentration. Combined with the density functional theory (DFT) calculation, the effects of Y doping on the hydrogen absorption properties of Ti could be summarized as follows: (1) the binding energy of Y to H calculated by DFT is stronger than that of Ti, thereby increasing the concentration of D absorbed; (2) Y has a strong affinity for O to form Y2O3, which reduces O impurity concentration in Ti film and facilitates more D atoms to enter the Ti lattice to increase the amount of D absorption; (3) Y substitutes for the Ti atom to increase the binding energy of Ti—H adjacent to Y, making the D atom less likely to escape, and to reduce the diffusion barrier of D around Ti, which is distant from Y, making it easy for D to diffuse deeper into the sample. Therefore, the concentration of D absorbed in Ti samples increases with the increase of Y concentration. With regard to the properties of D desorbed in Ti-Y samples, the results show that the D desorption activation energy of the deuteride Ti-Y film could be increased by doping Y. The D desorption temperature is determined by the D thermal desorption kinetics of the Ni/Ti-Y film system, and Y doping may increase the apparent binding energy and diffusion activation energy for D of the overall Ti lattice. The surface potential barrier has an important effect on D desorbed from Ti. Furthermore, Y doping has a certain degree of influence on the hydrogen absorption and desorption performance of Ti thin films.

Key wordsmagnetron sputtering    ion beam analysis    density functional theory    diffusion    apparent activation energy
收稿日期: 2022-04-08     
ZTFLH:  O647  
通讯作者: 施立群,lqshi@fudan.edu.cn,主要从事离子束应用物理、反应堆材料与物理、功能薄膜物理与技术等研究;
Corresponding author: SHI Liqun, professor, Tel: 13761509463, E-mail: lqshi@fudan.edu.cn
作者简介: 李 聪,女,1995年生,博士生
第一联系人:王 猛(共同第一作者),男,1997年生,博士生
图1  磁控溅射复合靶示意图
Structure typeSpace groupSpace group No.Cell parameter
a / nmb / nmc / nmα / (°)β / (°)γ / (°)
α-TiP63/mmc1940.294870.294870.461469090120
TiH2Fmˉ3m2250.442750.442750.44275909090
表1  α-Ti与TiH2单胞的结构参数
图2  α-Ti中H扩散路径(黑色箭头)
图3  TiH2中H扩散路径(黑色箭头)
StructureBinding energy / eVDiffusion activation energy / eV
Undoped YDoped YUndoped YDoped Y (near Y, far from Y)

α-Ti

-

-

Path 1: 0.733

Path 2: 1.987

Path 3: 0.563

Path 1: 1.605, 0.721

Path 2: 4.369, 1.906

Path 3: 1.215, 0.616

TiH2Site 1: 1.136Site 1: 1.167Path 1: 1.101Path 1: 1.885, 1.070
Site 2: 1.136Site 2: 1.102Path 2: 0.965Path 2: 0.993, 0.961
Site 3: 1.348Site 3: 1.197
表2  α-Ti和TiH2中氢结合能和扩散激活能计算结果
图4  掺Y前后H原子在α-Ti (Ti32)和TiH2 (Ti32H64)中不同扩散路径需要克服的能量势垒
图5  计算掺Y氢化钛中H的结合能时不同位置H的示意图
Structure typeBondPopulationLength / nm
Ti32 + (OIS)HH 1—Ti 240.110.207939
H 1—Ti 250.110.207980
H 1—Ti 310.110.210424
H 1—Ti 270.110.210441
H 1—Ti 220.110.210450
H 1—Ti 180.110.210462
Ti31Y + (OIS)HH 1—Ti 160.250.196828
H 1—Ti 22-0.040.215428
H 1—Ti 30-0.040.215478
H 1—Ti 6-0.090.216495
H 1—Ti 14-0.090.216544
H 1—Y 10.750.231456
Ti32H64H 57—Ti 290.170.191691
H 57—Ti 320.170.191692
H 57—Ti 310.170.191692
H 57—Ti 300.170.191690
Ti31YH64H 57—Y 10.780.216871
H 57—Ti 29-0.020.191911
H 57—Ti 30-0.030.191911
H 57—Ti 31-0.020.191912
H 61—Ti 130.170.192944
H 61—Ti 160.180.192419
H 61—Ti 290.170.194045
H 61—Ti 300.170.194046
H 53—Ti 90.170.192053
H 53—Ti 120.160.191819
H 53—Ti 260.160.191820
H 53—Ti 270.160.190320
表3  掺杂Y前后α-Ti(Ti32)和TiH2(Ti32H64)中原子间键的键级及键长
图6  吸氘前TiY0.13及吸氘后TiY0.13D0.78样品的Rutherford背散射技术(RBS)测量-拟合谱
图7  吸氘后TiY0.13D0.78样品的弹性反冲分析(ERDA)测量-拟合谱
图8  吸氘后不同Y含量的Ti薄膜中的D浓度分布
SampleBefore/after hydrogenationThickness / (1015 atoms·cm-2)Atomic fraction of Ti / %Atomic fraction of Y / %Atomic fraction of D / %
NiTi

Ti

(TiD0.63)

Before57706010000
After501130061.50038.50

TiY0.08

(TiY0.08D0.73)

Before48720092.507.500
After451220055.114.5940.30

TiY0.13

(TiY0.13D0.78)

Before50637088.8011.200
After451080052.446.5641.00
表4  离子束分析测量吸氘前后的元素含量以及薄膜厚度
图9  吸氘前Ti与TiY0.08薄膜及吸氘后TiD0.63与TiY0.08-D0.73薄膜的GIXRD谱
图10  吸氘后TiD0.63与TiY0.13D0.78的XPS全扫谱,及TiY0.13D0.78中Y3d、TiD0.63与TiY0.13D0.78中Ti2p的XPS窄扫谱
图11  原子氢和分子氢在材料表面和体内的能态图
图12  吸氘后样品的热脱附谱(仅展示D2信号)
图13  TiD0.63和TiY0.13D0.78样品的升温速率与热脱附峰峰温的关系
1 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
2 Beavis L C, Miglionico C J. Structural behavior of metal tritide films [J]. J. Less Common Met., 1972, 27: 201
3 Duan Y M, Wang W D, Ding W, et al. IBA investigation on the effect of Ti-Mo interdiffusion on the D concentration in TiD x /Mo films [J]. Nucl. Instrum. Methods Phys. Res., 2020, 470B: 61
4 Hirooka Y, Miyake M, Sano T. A study of hydrogen absorption and desorption by titanium [J]. J. Nucl. Mater., 1981, 96: 227
5 Tal-Gutelmacher E, Eliezer D. Hydrogen cracking in titanium-based alloys [J]. J. Alloys Compd., 2005, 404-406: 621
6 Zhao Y, Zheng H, Liu S, et al. Investigation of the structure and the property of hydrogen storage Ti-Mo alloys [J]. Acta Metall. Sin., 2003, 39: 89
6 赵 越, 郑 华, 刘 实 等. Ti-Mo合金的结构及吸放氢性能研究 [J]. 金属学报, 2003, 39: 89
7 Shi L Q, Zhou Z Y, Zhao G Q, et al. Hydrogenation characteristics and observation of disintegration conditions of Ti-Mo and Ni-coated Ti-Mo thin films [J]. J. Vac. Sci. Technol., 2001, 19A: 240
8 Shi L Q, Zhou Z Y, Zhao G Q. Hydrogen storage and hydrogen embrittlement of Ti-Mo alloy films [J]. Acta Metall. Sin., 2000, 36: 530
8 施立群, 周筑颖, 赵国庆. Ti-Mo合金薄膜的储氢特性和抗氢脆能力 [J]. 金属学报, 2000, 36: 530
9 Bing W Z, Long X G, Zhu Z L, et al. Structure and thermodynamic aspect of Ti-Hf alloys and their deuterides [J]. Chin. J. Inorg. Chem., 2010, 26: 1008
9 邴文增, 龙兴贵, 朱祖良 等. Ti-Hf合金的结构和吸氘热力学性质 [J]. 无机化学学报, 2010, 26: 1008
10 Liu B L, Liu S, Wang L B. Investigation on helium bubbles shape in Ti and Ti alloy by transmission electron microscopy [J]. At. Energy Sci. Technol., 2008, 42: 799
10 刘本良, 刘 实, 王隆保. Ti及Ti合金中氦泡形貌的透射电镜研究 [J]. 原子能科学技术, 2008, 42: 799
doi: 10.7538/yzk.2008.42.09.0799
11 Zhao E T, Chen Y Y, Kong F T, et al. Effect of yttrium on microstructure and mold filling capacity of a near-α high temperature titanium alloy [J]. China Foundry, 2012, 9: 344
12 Heo K H, Munirathnam N R, Lim J W, et al. Effect of oxygen and yttrium doping on the electrical resistivity and hardness of titanium metal obtained by electron beam melting [J]. Mater. Chem. Phys., 2008, 112: 923
13 Zhang J C, Wu E D, Liu S. Effects of Y on helium behavior in Ti-Y alloy films [J]. J. Nucl. Mater., 2014, 454: 119
14 Li C J, Xiong L Y, Wu E D, et al. Effect of yttrium on nucleation and growth of zirconium hydrides [J]. J. Nucl. Mater., 2015, 457: 142
15 Yun S, Oyama S T. Correlations in palladium membranes for hydrogen separation: A review [J]. J. Membrane Sci., 2011, 375: 28
16 Verma N, Krishnamurthy G, Tichelaar F D, et al. Controlling morphology and texture of sputter-deposited Pd films by tuning the surface topography of the (Ti) adhesive layer [J]. Surf. Coat. Technol., 2019, 359: 24
17 Lim H R, Eom N S A, Cho J H, et al. Hydrogen gettering of titanium-palladium/palladium nanocomposite films synthesized by cosputtering and vacuum-annealing [J]. Int. J. Hydrogen Energy, 2018, 43: 19990
18 Zhang Q J, Qi Q H, Cao Z, et al. Effect of C contamination on H2 uptake of Ti film [J]. Vac. Sci. Technol., 1997, 17: 45
18 张强基, 漆其鸿, 曹 昭 等. 碳污染对钛膜吸氢能力影响的研究 [J]. 真空科学与技术, 1997, 17: 45
19 Griessen R, Huiberts J N, Kremers M, et al. Yttrium and lanthanum hydride films with switchable optical properties [J]. J. Alloys Compd., 1997, 253-254: 44
20 Shi L Q, Zhou Z Y, Zhao G Q. Hydrogenation and thermal release of hydrogen in titanium thin films [J]. At. Energy Sci. Technol., 2000, 34: 328
20 施立群, 周筑颖, 赵国庆. 钛薄膜氢化及热释放特性研究 [J]. 原子能科学技术, 2000, 34: 328
21 Zhang W Z, Tang X H, Li J Q, et al. Deuterium retention in carbon-tungsten co-deposition layers prepared by RF magnetron sputtering [J]. Acta Phys. Sin., 2013, 62: 195202
21 张文钊, 唐兴华, 李嘉庆 等. 氘在碳钨共沉积层中的滞留行为研究 [J]. 物理学报, 2013, 62: 195202
22 Zhao G Q, Ren C G. Nuclear Analysis Technique [M]. Beijing: Atomic Energy Press, 1989: 1
22 赵国庆, 任炽刚. 核分析技术 [M]. 北京: 原子能出版社, 1989: 1
23 L′ Ecuyer J, Brassard C, Cardinal C, et al. An accurate and sensitive method for the determination of the depth distribution of light elements in heavy materials [J]. J. Appl. Phys., 1976, 47: 381
24 Mayer M. Improved physics in SIMNRA 7 [J]. Nucl. Instrum. Meth., 2014, 332B: 176
25 Li M Q, Yao X Y. First-principles study of α-titanium and β-titanium crystal structure with hydrogen [J]. Rare Met. Mater. Eng., 2013, 42: 530
25 李淼泉, 姚晓燕. 置氢α-钛和β-钛晶体结构的第一性原理研究 [J]. 稀有金属材料与工程, 2013, 42: 530
26 Liu S, Wang Y G. First-principles of hydrogen diffusion mechanism in titanium crystals [J]. Chin. J. Nonferrous Met., 2015, 25: 3100
26 刘 松, 王寅岗. 氢在钛晶体中扩散行为的第一性原理 [J]. 中国有色金属学报, 2015, 25: 3100
27 Liu X K, Zhang Y, Zheng Z, et al. Structural and thermodynamic properties of TiH2 from first-principles calculations [J]. Sci. Sin. Phys. Mech. Astron., 2011, 41: 207
27 刘显坤, 张 旸, 郑 洲 等. 第一性原理研究TiH2的结构和热力学性质 [J]. 中国科学: 物理学 力学 天文学, 2011, 41: 207
28 Huang X T, Qing P L, Qin C S, et al. Influences of transition elements (V, Ti, Y) on hydrogen storage property of Mg-Al alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 333
28 黄显吞, 卿培林, 覃昌生 等. 过渡金属V、Ti及Y的添加对Mg-Al合金储氢性能的影响 [J]. 中国有色金属学报, 2020, 30: 333
29 Zhu Y, Wang F H. First principles study on the dehydrogenation from MgH2 (001) surface by metal (Li, A1, Ti) doping [J]. Dev. Energy Sci., 2015, 3(1): 20
29 朱 玥, 王福合. 金属原子(Li, A1, Ti)掺杂对MgH2 (001)表面脱氢性能影响的第一性原理研究 [J]. 能源科学发展: 中英文版, 2015, 3(1): 20
30 Germán E, Luna C, Marchetti J, et al. A DFT study of dopant (Zr, Nb) and vacancies on the dehydrogenation on MgH2 (001) surface [J]. Int. J. Hydrogen Energy, 2014, 39: 1732
31 Li Y X. First-principles study on properties and hydrogen atoms diffusion of zirconium-hydrogen system [D]. Taiyuan: North University of China, 2021
31 李越鑫. 锆氢体系性质和氢原子扩散的第一性原理研究 [D]. 太原: 中北大学, 2021
32 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
33 Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J. Phys. Condens. Matter, 2002, 14: 2717
34 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
35 Han X L, Wang Q, Sun D L, et al. First-principles study of hydrogen diffusion in alpha Ti [J]. Int. J. Hydrogen Energy, 2009, 34: 3983
36 San-Martin A, Manchester F D. The H-Ti (Hydrogen-Titanium) system [J]. Bull. Alloy Phase Diagrams, 1987, 8: 30
37 Yakel H L. Thermocrystallography of higher hydrides of titanium and zirconium [J]. Acta Crystallogr., 1958, 11: 46
38 Uwamino Y, Ishizuka T, Yamatera H. X-ray photoelectron spectroscopy of rare-earth compounds [J]. J. Electron Spectrosc. Relat. Phenom., 1984, 34: 67
39 Paulin I, Mandrino D, Donik Č, et al. AES and XPS characterization of titanium hydride powder [J]. Mater. Technol., 2010, 44: 73
40 Ebihara K I, Kaburaki H. Numerical modeling of thermal desorption spectra of hydrogen: A review of thermal desorption models [J]. ISIJ Int., 2012, 52: 181
41 Zhang B, Zheng H, Liu S, et al. Hydrogen absorption and desorption of titanium [J]. At. Energy Sci. Technol., 2005, 39: 522
41 张 滨, 郑 华, 刘 实 等. 纯Ti吸放氢过程研究 [J]. 原子能科学技术, 2005, 39: 522
42 Martin M, Gommel C, Borkhart C, et al. Absorption and desorption kinetics of hydrogen storage alloys [J]. J. Alloys Compd., 1996, 238: 193
43 Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of TiH2 [J]. Mater. Sci. Eng., 2003, A356: 190
44 Shi L Q, Zhao G Q, Zhou Z Y, et al. The kinetics of hydrogen interaction with thin films [J]. At. Energy Sci. Technol., 2000, 34: 216
44 施立群, 赵国庆, 周筑颖 等. 储氢薄膜的吸氢动力学研究 [J]. 原子能科学技术, 2000, 34: 216
[1] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[8] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[9] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[10] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[11] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[12] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[13] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[14] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[15] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.