Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1360-1370    DOI: 10.11900/0412.1961.2022.00303
  综述 本期目录 | 过刊浏览 |
异质纳米结构金属强化韧化机理研究进展
卢磊(), 赵怀智
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals
LU Lei(), ZHAO Huaizhi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
Lei LU, Huaizhi ZHAO. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. Acta Metall Sin, 2022, 58(11): 1360-1370.

全文: PDF(2677 KB)   HTML
摘要: 

异质结构金属通常表现出传统均质材料无法企及的优异综合力学性能(如高强度、塑性和断裂韧性等),这主要源于其内部各组元间交互作用所产生的协同效应,包括应力/应变梯度、几何必需位错,以及独特的界面行为等。本文聚焦层状和纳米孪晶2类典型的异质纳米结构,回顾近期关于异质纳米结构金属的强化与韧化机制的研究进展,重点关注各异质组元性质、尺寸、界面以及加载方向等因素对宏观强化与韧化行为的影响规律。

关键词 异质纳米结构金属层状结构纳米孪晶强韧化界面各向异性    
Abstract

Heterostructured metals typically exhibit excellent mechanical properties, such as high strength, plasticity, and fracture toughness, which are not present in conventional homogeneous materials. This is primarily due to the synergistic effects arising from the interactions between the internal components including the stress/strain gradients, geometrically necessary dislocations, and unique interfacial behavior. This study focuses on two typical heterogeneous nanostructures (laminated and nanotwinned) by reviewing the recent progress in their strengthening and toughening mechanisms. The analysis highlights the effects of the properties and sizes of the individual components, interfaces, and loading directions on the macroscopic strengthening and toughening behavior.

Key wordsheterogeneous nanostructured metal    laminated structure    nanotwin    strengthening and toughening    interface    anisotropy
收稿日期: 2022-06-20     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51931010);国家自然科学基金项目(92163202);中国科学院前沿科学重点研究计划项目(GJ-HZ2029);辽宁省兴辽英才计划项目(XLYC1802026)
作者简介: 卢 磊,女,1970年生,研究员,博士
图1  层状结构Cu/Cu4Zn和Cu/Cu32Zn的局部微观结构(层间距λ = 19 μm)与相应的工程应力-应变曲线,以及3种层状纳米孪晶Cu样品的微观结构示意图与相应的工程应力-应变曲线和加工硬化率曲线,并与相应的单组分进行对照[33,34]
图2  拉伸试样在动态塑性变形(DPD) Cu样品中的取样方式示意图,DPD Cu样品中典型的截面微观结构(显示纳米孪晶束(NT)镶嵌在纳米晶(NG)基体中),纳米孪晶/纳米晶混合结构Cu在不同加载方向下的拉伸工程应力-应变曲线,并与粗晶Cu进行对比,及Sample-P、Sample-N和Sample-I在1.0%宏观应变量下的局部全场应变分布图[45]
图3  层状异质结构材料在不同裂纹取向下的韧化机制,Al-7075/Al-1050异质层状结构金属的EBSD微观结构[54]及其在Crack arrester方向冲击断裂的SEM断面形貌[54]
图4  纳米多层结构Cu/Nb和Cu/Zr的微观结构,及Cu/Nb和Cu/Zr多层膜中断裂韧性(KIC)随Cu层厚度(hCu)的变化关系[60]
图5  断裂试样在DPD Cu样品中的取样方式示意图,不同取向试样的裂纹扩展阻力(J-R)曲线,及裂纹扩展过程示意图[16]
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866 pmid: 20395503
2 Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
3 Xie J J, Wu X L, Hong Y S. Shear bands at the fatigue crack tip of nanocrystalline nickel [J]. Scr. Mater., 2007, 57: 5
doi: 10.1016/j.scriptamat.2007.03.027
4 Kumar K S, Suresh S, Chisholm M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Mater., 2003, 51: 387
doi: 10.1016/S1359-6454(02)00421-4
5 Farkas D, Van Petegem S, Derlet P M, et al. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni [J]. Acta Mater., 2005, 53: 3115
doi: 10.1016/j.actamat.2005.02.012
6 Pippan R, Hohenwarter A. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials [J]. Mater. Res. Lett., 2016, 4: 127
pmid: 27570712
7 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
8 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
9 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
10 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
doi: 10.1016/j.actamat.2010.10.002
11 Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
12 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
13 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
14 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
15 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
16 Zhao H Z, You Z S, Tao N R, et al. Anisotropic toughening of nanotwin bundles in the heterogeneous nanostructured Cu [J]. Acta Mater., 2022, 228: 117748
doi: 10.1016/j.actamat.2022.117748
17 ASTM. Standard test method for measurement of fracture toughness [S]. West Conshchocken: American Society of Testing and Materials, 2015
18 Smith D L, Hoffman D W. Thin-film deposition: Principles and practice [J]. Phys. Today, 1996, 49: 60
19 Ross C A. Electrodeposited multilayer thin films [J]. Annu. Rev. Mater. Sci., 1994, 24: 159
doi: 10.1146/annurev.ms.24.080194.001111
20 Bakonyi I, Péter L. Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems [J]. Prog. Mater. Sci., 2010, 55: 107
doi: 10.1016/j.pmatsci.2009.07.001
21 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177 pmid: 21330487
22 Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Mater., 2016, 112: 337
doi: 10.1016/j.actamat.2016.04.045
23 You Z S, Qu S D, Luo S S, et al. Fracture toughness evaluation of nanostructured metals via a contactless crack opening displacement gauge [J]. Materialia, 2019, 7: 100430
doi: 10.1016/j.mtla.2019.100430
24 Luo S S, You Z S, Lu L. Intrinsic fracture toughness of bulk nanostructured Cu with nanoscale deformation twins [J]. Scr. Mater., 2017, 133: 1
doi: 10.1016/j.scriptamat.2017.01.032
25 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
26 Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: theory and experiment [J]. Acta Metall. Mater., 1994, 42: 475
doi: 10.1016/0956-7151(94)90502-9
27 Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
28 Mughrabi H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity [J]. Mater. Sci. Eng., 2001, A317: 171
29 Mughrabi H. The effect of geometrically necessary dislocations on the flow stress of deformed crystals containing a heterogeneous dislocation distribution [J]. Mater. Sci. Eng., 2001, A319-321: 139
30 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
31 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
32 Wang Y F, Yang M X, Ma X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates [J]. Mater. Sci. Eng., 2018, A727: 113
33 Cao Z, Cheng Z, Xu W, et al. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103: 67
doi: 10.1016/j.jmst.2021.06.043
34 Wan T, Cheng Z, Bu L F, et al. Work hardening discrepancy designing to strengthening gradient nanotwinned Cu [J]. Scr. Mater., 2021, 201: 113975
doi: 10.1016/j.scriptamat.2021.113975
35 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
36 Lu K, Yan F K, Wang H T, et al. Strengthening austenitic steels by using nanotwinned austenitic grains [J]. Scr. Mater., 2012, 66: 878
doi: 10.1016/j.scriptamat.2011.12.044
37 Xiong L, You Z S, Qu S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles [J]. Acta Mater., 2018, 150: 130
doi: 10.1016/j.actamat.2018.02.065
38 You Z S, Luo S S, Lu L. Size effect of deformation nanotwin bundles on their strengthening and toughening in heterogeneous nanostructured Cu [J]. Sci. China Technol. Sci., 2021, 64: 23
doi: 10.1007/s11431-020-1584-6
39 Yan F K, Liu G Z, Tao N R, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
doi: 10.1016/j.actamat.2011.11.009
40 Zhang Y, Tao N R, Lu K. Mechanical properties and rolling behaviors of Nano-grained copper with embedded nano-twin bundles [J]. Acta Mater., 2008, 56: 2429
doi: 10.1016/j.actamat.2008.01.030
41 Yan F, Zhang H W, Tao N R, et al. Quantifying the microstructures of pure cu subjected to dynamic plastic deformation at cryogenic temperature [J]. J. Mater. Sci. Technol., 2011, 27: 673
doi: 10.1016/S1005-0302(11)60124-2
42 Yan F K, Tao N R, Archie F, et al. Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains [J]. Acta Mater., 2014, 81: 487
doi: 10.1016/j.actamat.2014.08.054
43 Li Q, Yan F K, Tao N R, et al. Deformation compatibility between nanotwinned and recrystallized grains enhances resistance to interface cracking in cyclic loaded stainless steel [J]. Acta Mater., 2019, 165: 87
doi: 10.1016/j.actamat.2018.11.033
44 You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
45 Zhao H Z, You Z S, Tao N R, et al. Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: Effect of deformation compatibility [J]. Acta Mater., 2021, 210: 116830
doi: 10.1016/j.actamat.2021.116830
46 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
47 Lesuer D R, Syn C K, Sherby O D, et al. Mechanical behaviour of laminated metal composites [J]. Int. Mater. Rev., 1996, 41: 169
doi: 10.1179/imr.1996.41.5.169
48 Hunt W H, Osman T M, Lewandowski J J. Micro- and macrostructural factors in DRA fracture resistance [J]. JOM, 1993, 45(1): 30
49 Dehm G, Jaya B N, Raghavan R, et al. Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales [J]. Acta Mater., 2018, 142: 248
doi: 10.1016/j.actamat.2017.06.019
50 Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
51 Pippan R. The crack driving force for fatigue crack propagation [J]. Eng. Fract. Mech., 1993, 44: 821
doi: 10.1016/0013-7944(93)90208-A
52 Wang Y Q, Fritz R, Kiener D, et al. Fracture behavior and deformation mechanisms in nanolaminated crystalline/amorphous micro-cantilevers [J]. Acta Mater., 2019, 180: 73
doi: 10.1016/j.actamat.2019.09.002
53 Ohashi Y, Wolfenstine J, Koch R, et al. Fracture behavior of a laminated steel-brass composite in bend tests [J]. Mater. Sci. Eng., 1992, A151: 37
54 Cepeda-Jiménez C M, García-Infanta J M, Pozuelo M, et al. Impact toughness improvement of high-strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding [J]. Scr. Mater., 2009, 61: 407
doi: 10.1016/j.scriptamat.2009.04.030
55 Venkateswara Rao K T, Yu W K, Ritchie R O. Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening [J]. Metall. Trans., 1989, 20A: 485
56 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
57 Cepeda-Jiménez C M, Pozuelo M, García-Infanta J M, et al. Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites [J]. Mater. Sci. Eng., 2008, A496: 133
58 Kum D W, Oyama T, Wadsworth J, et al. The impact properties of laminated composites containing ultrahigh carbon (UHC) steels [J]. J. Mech. Phys. Solids, 1983, 31: 173
doi: 10.1016/0022-5096(83)90049-2
59 Lee S, Oyama T, Wadsworth J, et al. Impact properties of a laminated composite based on ultrahigh carbon steel and brass [J]. Mater. Sci. Eng., 1992, A154: 133
60 Zhang J Y, Zhang X, Wang R H, et al. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase [J]. Acta Mater., 2011, 59: 7368
doi: 10.1016/j.actamat.2011.08.016
61 Nasim M, Li Y C, Wen M, et al. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50: 215
doi: 10.1016/j.jmst.2020.03.011
62 Misra A, Krug H. Deformation behavior of nanostructured metallic multilayers [J]. Adv. Eng. Mater., 2001, 3: 217
doi: 10.1002/1527-2648(200104)3:4<217::AID-ADEM217>3.0.CO;2-5
63 Zhang J Y, Liu G, Zhang X, et al. A maximum in ductility and fracture toughness in nanostructured Cu/Cr multilayer films [J]. Scr. Mater., 2010, 62: 333
doi: 10.1016/j.scriptamat.2009.10.030
64 Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles [J]. Acta Mater., 2009, 57: 6215
doi: 10.1016/j.actamat.2009.08.048
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[4] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[7] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[8] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[9] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[12] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[13] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[14] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[15] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.