|
|
异质纳米结构金属强化韧化机理研究进展 |
卢磊( ), 赵怀智 |
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals |
LU Lei( ), ZHAO Huaizhi |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
Lei LU,
Huaizhi ZHAO.
Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. Acta Metall Sin, 2022, 58(11): 1360-1370.
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866
pmid: 20395503
|
2 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
3 |
Xie J J, Wu X L, Hong Y S. Shear bands at the fatigue crack tip of nanocrystalline nickel [J]. Scr. Mater., 2007, 57: 5
doi: 10.1016/j.scriptamat.2007.03.027
|
4 |
Kumar K S, Suresh S, Chisholm M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Mater., 2003, 51: 387
doi: 10.1016/S1359-6454(02)00421-4
|
5 |
Farkas D, Van Petegem S, Derlet P M, et al. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni [J]. Acta Mater., 2005, 53: 3115
doi: 10.1016/j.actamat.2005.02.012
|
6 |
Pippan R, Hohenwarter A. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials [J]. Mater. Res. Lett., 2016, 4: 127
pmid: 27570712
|
7 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
8 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
9 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
10 |
Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
doi: 10.1016/j.actamat.2010.10.002
|
11 |
Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
|
12 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
13 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
14 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
15 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
16 |
Zhao H Z, You Z S, Tao N R, et al. Anisotropic toughening of nanotwin bundles in the heterogeneous nanostructured Cu [J]. Acta Mater., 2022, 228: 117748
doi: 10.1016/j.actamat.2022.117748
|
17 |
ASTM. Standard test method for measurement of fracture toughness [S]. West Conshchocken: American Society of Testing and Materials, 2015
|
18 |
Smith D L, Hoffman D W. Thin-film deposition: Principles and practice [J]. Phys. Today, 1996, 49: 60
|
19 |
Ross C A. Electrodeposited multilayer thin films [J]. Annu. Rev. Mater. Sci., 1994, 24: 159
doi: 10.1146/annurev.ms.24.080194.001111
|
20 |
Bakonyi I, Péter L. Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems [J]. Prog. Mater. Sci., 2010, 55: 107
doi: 10.1016/j.pmatsci.2009.07.001
|
21 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
22 |
Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Mater., 2016, 112: 337
doi: 10.1016/j.actamat.2016.04.045
|
23 |
You Z S, Qu S D, Luo S S, et al. Fracture toughness evaluation of nanostructured metals via a contactless crack opening displacement gauge [J]. Materialia, 2019, 7: 100430
doi: 10.1016/j.mtla.2019.100430
|
24 |
Luo S S, You Z S, Lu L. Intrinsic fracture toughness of bulk nanostructured Cu with nanoscale deformation twins [J]. Scr. Mater., 2017, 133: 1
doi: 10.1016/j.scriptamat.2017.01.032
|
25 |
Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
|
26 |
Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: theory and experiment [J]. Acta Metall. Mater., 1994, 42: 475
doi: 10.1016/0956-7151(94)90502-9
|
27 |
Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
|
28 |
Mughrabi H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity [J]. Mater. Sci. Eng., 2001, A317: 171
|
29 |
Mughrabi H. The effect of geometrically necessary dislocations on the flow stress of deformed crystals containing a heterogeneous dislocation distribution [J]. Mater. Sci. Eng., 2001, A319-321: 139
|
30 |
Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
|
31 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
32 |
Wang Y F, Yang M X, Ma X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates [J]. Mater. Sci. Eng., 2018, A727: 113
|
33 |
Cao Z, Cheng Z, Xu W, et al. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103: 67
doi: 10.1016/j.jmst.2021.06.043
|
34 |
Wan T, Cheng Z, Bu L F, et al. Work hardening discrepancy designing to strengthening gradient nanotwinned Cu [J]. Scr. Mater., 2021, 201: 113975
doi: 10.1016/j.scriptamat.2021.113975
|
35 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
36 |
Lu K, Yan F K, Wang H T, et al. Strengthening austenitic steels by using nanotwinned austenitic grains [J]. Scr. Mater., 2012, 66: 878
doi: 10.1016/j.scriptamat.2011.12.044
|
37 |
Xiong L, You Z S, Qu S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles [J]. Acta Mater., 2018, 150: 130
doi: 10.1016/j.actamat.2018.02.065
|
38 |
You Z S, Luo S S, Lu L. Size effect of deformation nanotwin bundles on their strengthening and toughening in heterogeneous nanostructured Cu [J]. Sci. China Technol. Sci., 2021, 64: 23
doi: 10.1007/s11431-020-1584-6
|
39 |
Yan F K, Liu G Z, Tao N R, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
doi: 10.1016/j.actamat.2011.11.009
|
40 |
Zhang Y, Tao N R, Lu K. Mechanical properties and rolling behaviors of Nano-grained copper with embedded nano-twin bundles [J]. Acta Mater., 2008, 56: 2429
doi: 10.1016/j.actamat.2008.01.030
|
41 |
Yan F, Zhang H W, Tao N R, et al. Quantifying the microstructures of pure cu subjected to dynamic plastic deformation at cryogenic temperature [J]. J. Mater. Sci. Technol., 2011, 27: 673
doi: 10.1016/S1005-0302(11)60124-2
|
42 |
Yan F K, Tao N R, Archie F, et al. Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains [J]. Acta Mater., 2014, 81: 487
doi: 10.1016/j.actamat.2014.08.054
|
43 |
Li Q, Yan F K, Tao N R, et al. Deformation compatibility between nanotwinned and recrystallized grains enhances resistance to interface cracking in cyclic loaded stainless steel [J]. Acta Mater., 2019, 165: 87
doi: 10.1016/j.actamat.2018.11.033
|
44 |
You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
|
45 |
Zhao H Z, You Z S, Tao N R, et al. Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: Effect of deformation compatibility [J]. Acta Mater., 2021, 210: 116830
doi: 10.1016/j.actamat.2021.116830
|
46 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
47 |
Lesuer D R, Syn C K, Sherby O D, et al. Mechanical behaviour of laminated metal composites [J]. Int. Mater. Rev., 1996, 41: 169
doi: 10.1179/imr.1996.41.5.169
|
48 |
Hunt W H, Osman T M, Lewandowski J J. Micro- and macrostructural factors in DRA fracture resistance [J]. JOM, 1993, 45(1): 30
|
49 |
Dehm G, Jaya B N, Raghavan R, et al. Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales [J]. Acta Mater., 2018, 142: 248
doi: 10.1016/j.actamat.2017.06.019
|
50 |
Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
|
51 |
Pippan R. The crack driving force for fatigue crack propagation [J]. Eng. Fract. Mech., 1993, 44: 821
doi: 10.1016/0013-7944(93)90208-A
|
52 |
Wang Y Q, Fritz R, Kiener D, et al. Fracture behavior and deformation mechanisms in nanolaminated crystalline/amorphous micro-cantilevers [J]. Acta Mater., 2019, 180: 73
doi: 10.1016/j.actamat.2019.09.002
|
53 |
Ohashi Y, Wolfenstine J, Koch R, et al. Fracture behavior of a laminated steel-brass composite in bend tests [J]. Mater. Sci. Eng., 1992, A151: 37
|
54 |
Cepeda-Jiménez C M, García-Infanta J M, Pozuelo M, et al. Impact toughness improvement of high-strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding [J]. Scr. Mater., 2009, 61: 407
doi: 10.1016/j.scriptamat.2009.04.030
|
55 |
Venkateswara Rao K T, Yu W K, Ritchie R O. Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening [J]. Metall. Trans., 1989, 20A: 485
|
56 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
57 |
Cepeda-Jiménez C M, Pozuelo M, García-Infanta J M, et al. Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites [J]. Mater. Sci. Eng., 2008, A496: 133
|
58 |
Kum D W, Oyama T, Wadsworth J, et al. The impact properties of laminated composites containing ultrahigh carbon (UHC) steels [J]. J. Mech. Phys. Solids, 1983, 31: 173
doi: 10.1016/0022-5096(83)90049-2
|
59 |
Lee S, Oyama T, Wadsworth J, et al. Impact properties of a laminated composite based on ultrahigh carbon steel and brass [J]. Mater. Sci. Eng., 1992, A154: 133
|
60 |
Zhang J Y, Zhang X, Wang R H, et al. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase [J]. Acta Mater., 2011, 59: 7368
doi: 10.1016/j.actamat.2011.08.016
|
61 |
Nasim M, Li Y C, Wen M, et al. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50: 215
doi: 10.1016/j.jmst.2020.03.011
|
62 |
Misra A, Krug H. Deformation behavior of nanostructured metallic multilayers [J]. Adv. Eng. Mater., 2001, 3: 217
doi: 10.1002/1527-2648(200104)3:4<217::AID-ADEM217>3.0.CO;2-5
|
63 |
Zhang J Y, Liu G, Zhang X, et al. A maximum in ductility and fracture toughness in nanostructured Cu/Cr multilayer films [J]. Scr. Mater., 2010, 62: 333
doi: 10.1016/j.scriptamat.2009.10.030
|
64 |
Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles [J]. Acta Mater., 2009, 57: 6215
doi: 10.1016/j.actamat.2009.08.048
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|