金属学报, 2024, 60(3): 311-322 DOI: 10.11900/0412.1961.2022.00010

研究论文

多道次压缩变形对AZ80镁合金微观组织演化的影响

李振亮,, 张欣磊, 田董扩

内蒙古科技大学 材料与冶金学院 包头 014010

Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy

LI Zhenliang,, ZHANG Xinlei, TIAN Dongkuo

School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China

通讯作者: 李振亮,lizhenliang@imust.edu.cn,主要从事镁合金塑性变形研究

责任编辑: 李海兰

收稿日期: 2022-01-10   修回日期: 2022-03-04  

基金资助: 国家自然科学基金项目(51364032)
内蒙古自然科学基金项目(2022MS05028)

Corresponding authors: LI Zhenliang, professor, Tel:(0472)5951572, E-mail:lizhenliang@imust.edu.cn

Received: 2022-01-10   Revised: 2022-03-04  

Fund supported: National Natural Science Foundation of China(51364032)
Inner Mongolia Natural Science Foundation(2022MS05028)

作者简介 About authors

李振亮,男,1968年生,教授,博士

摘要

镁合金具有密排六方结构,可动滑移系少导致其室温塑性差,而热加工对调控镁合金塑性有重要作用。本工作对AZ80镁合金分别进行恒温、阶梯降温多道次压缩变形,利用电子背散射衍射(EBSD)技术观察分析了不同变形程度、不同变形路径下AZ80镁合金的微观组织,研究了AZ80镁合金热压缩变形过程中晶界、位错密度、Schmid因子和极图演化规律。结果表明:晶粒尺寸、孪晶、织构综合作用对AZ80镁合金塑性调控的影响优于单一动态再结晶对其塑性调控的影响,恒温三次变形(ε = 0.6) (3P)有利于发生动态再结晶,而阶梯降温三次变形(ε = 0.6) (3P)更有利于塑性变形。晶粒取向差减小、小角度晶界(LAGBs)数量增多、几何必需位错(GND)密度增加3者共同作用产生更多86°{101¯2} <12¯10>拉伸孪晶是影响阶梯降温三次变形塑性调控的重要因素。

关键词: AZ80; 晶界; 取向差; 几何必需位错密度; 塑性调控

Abstract

Magnesium alloy has a hexagonal close-packed crystal structure, and its plasticity is poor at room temperature. This is primarily due to the small number of movable slip systems at room temperature, which is prone to deformation texture. Therefore, temperature and compression deformation play an important role in the regulation of plastic deformation. In this work, AZ80 magnesium alloy was subjected to multi-pass compression deformation at a constant temperature and step-down temperature. The microstructure of the AZ80 magnesium alloy with different deformation degrees and deformation paths was observed and analyzed using EBSD. In addition, the grain boundary, dislocation density, Schmid factor, and polar figure evolution of the AZ80 magnesium alloy during hot compression deformation were primarily studied. Results show that the comprehensive effect of grain size, twinning, and texture on the plastic regulation of AZ80 magnesium alloy is better than that of single dynamic recrystallization. Moreover, three-time constant-temperature deformation (ε = 0.6) promotes dynamic recrystallization, whereas three-time step-cooling deformation (ε = 0.6) promotes plastic deformation. More 86°{101¯2} <12¯10> tensile twins are produced by reduced grain orientation difference, increased number of low-angle grain boundaries, and increased geometrically necessary dislocation density, which are important factors affecting the plastic regulation of three-time step-cooling deformation (ε = 0.6).

Keywords: AZ80; grain boundary; misorientation; geometrically necessary dislocation density; plastic regulation

PDF (6964KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响[J]. 金属学报, 2024, 60(3): 311-322 DOI:10.11900/0412.1961.2022.00010

LI Zhenliang, ZHANG Xinlei, TIAN Dongkuo. Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy[J]. Acta Metallurgica Sinica, 2024, 60(3): 311-322 DOI:10.11900/0412.1961.2022.00010

镁合金具有密度低、比强度和比刚度高及阻尼系数大等优异性能,在飞机、汽车和3C产品等行业得到广泛应用[1],但由于镁合金属于hcp结构,常温下可用滑动系数量少,易产生变形织构,导致其塑性较差,这些条件都限制了镁合金应用[2~4]

在镁合金塑性变形过程中,动态再结晶、孪晶形核、位错密度是影响其强度及塑性的主要原因。第一,铸态AZ80镁合金在变形过程中存在控制晶粒均匀度的临界应变,当应变超过临界应变时,可获得均匀的动态再结晶晶粒,从而提高镁合金的强度及塑性[5]。AZ31、AZ61镁合金经等温多向锻造随锻造道次增加,晶粒逐渐细化、组织均匀性增强,其强度和塑性有很大提高[6,7]。AZ80镁合金等温多道次变形保温时间小于300 s时晶粒迅速长大,当保温时间大于300 s时晶粒生长速率则趋于稳定,随道次间隔保温时间延长其流变应力峰值越高,使其强度得到提升[8,9]。第二,AZ80镁合金室温多道次压缩过程中织构演变主要受{101¯2}拉伸孪晶影响,当拉伸孪晶晶粒取向转到压缩轴附近时有利于细化晶粒和弱化初始基面织构[10]。压缩变形过程中随压缩方向与晶粒c轴之间夹角增大,拉伸孪晶启动量逐渐增大,基面织构得到明显弱化,其塑性得到提升[11]。应变路径对AZ80镁合金流变应力的影响主要表现为“硬化现象”,单道次变形时柱面织构逐渐向多道次基面织构转变,材料强度逐渐提高[12]。另外,基面取向低的Schmid因子对AZ80镁合金基面织构起到强化作用,不利于塑性变形[13]。第三,位错密度是衡量材料韧性和强度的重要参数。不同应变路径下AZ31B镁合金中几何必需位错(GND)密度随孪晶数量增多而减小[14],而循环加载下AZ31镁合金位错密度演化规律则与棘轮应变演化模式一致[15];随锻造温度降低和应变量增加,AZ80镁合金位错密度增大,材料出现了“应变硬化现象”[16],而铜/青铜层压板变形过程中在界面附近发现额外的GND却有利于塑性提升[17]。第四,细晶镁合金在变形过程中存在晶界滑动与晶界迁移协调作用,晶界滑动越远则取向差角度就越大,有助于获得大角度晶界(HAGBs)和均匀细小的等轴晶[18]。当晶粒取向差大于35°时,AZ31镁合金可以通过滑移辅助拉伸孪晶形核,而且孪晶尖端处的位错集中会在晶界产生“不相容应力”,从而促使相邻晶粒中形成另一个孪晶,这更有利于塑性变形[19]。而目前不同路径下多因素作用对AZ80镁合金塑性调控机理的影响报道较少。

本工作对AZ80镁合金分别采用恒温(400℃)多道次压缩变形和阶梯降温(400、350、300℃)多道次压缩变形工艺,模拟不同路径下锻造工艺对AZ80镁合金微观组织演化的影响,旨在为实际生产提供参考。

1 实验方法

实验所用材料为商用AZ80镁合金(Al 7.9%,Zn 0.4%,Mn 0.2%,Mg余量,质量分数)铸态毛坯圆柱试件,经过360℃、16 h均质化处理后机加工成直径8 mm、长15 mm圆柱形试样,试样轴线平行于浇铸方向。采用Gleeble 3500热模拟试验机进行热压缩变形,变形速率均为ε˙ = 1 s-1,试件升温速率10℃/s,恒温三次变形工艺见图1a,先升温至400℃,保温300 s后进行第一道次变形(应变ε = 0.2) (isothermal single-pass deformation),保温停留5 s后进行第二道次变形(ε = 0.4) (isothermal double-pass deformation),保温停留5 s后进行第三道次变形(ε = 0.6) (isothermal three-pass deformation),变形后水冷,以变形后的纵截面为观察面。阶梯降温三次变形工艺见图1b,升温至400℃,保温5 min后进行第一道次变形(ε = 0.2) (non-isothermal single-pass deformation),降温至350℃,保温300 s后进行第二道次变形(ε = 0.4) (non-isothermal double-pass deformation),降温至300℃,保温5 min后进行第三道次变形(ε = 0.6) (non-isothermal three-pass deformation),变形后水冷,以变形后的纵截面为观察面。用配有TSLOIM 6.1.3软件的Quanta 200FEG扫描电镜(SEM)观察变形后微观组织形貌,利用Channel 5软件对晶粒取向数据进行处理。

图1

图1   恒温三次变形工艺及阶梯降温三次变形工艺流程图

Fig.1   Process maps of three-step deforming process with constant-temperature (a) and three-step deforming process with step-cooling (b) (P—pass, ε—strain)


2 实验结果

2.1 晶粒形貌与尺寸演化

图2给出了恒温、阶梯降温2类变形工艺晶粒形貌和尺寸变化规律。由图2a~c可知,微观组织演化与塑性变形过程密切相关。由图中可以看出,恒温一次变形(ε = 0.2)后的微观组织中存在很多不连续晶界,经过恒温二次变形(ε = 0.4)、恒温三次变形(ε = 0.6)后,发现不连续晶界已急剧减少,且晶粒尺寸随着变形而逐渐细化。图2d为阶梯降温三次变形(ε = 0.6)微观组织,其晶粒细化程度明显高于恒温三次变形。

图2

图2   恒温、阶梯降温2类变形工艺的微观组织演变

Fig.2   Microstructure evolutions of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)


图3为恒温、阶梯降温2类变形工艺下平均晶粒尺寸和平均晶粒纵横比的定量描述(重点分析变形量ε = 0.2和0.6变形工艺)。从图3a可知,恒温多次变形平均晶粒尺寸从18.315 μm (ε = 0.2)下降到14.152 μm (ε = 0.6),而阶梯降温多次变形平均晶粒尺寸则从18.315 μm (ε = 0.2)下降到10.197 μm (ε = 0.6);从图3b可知,恒温多次变形平均晶粒纵横比从2.077 (ε = 0.2)下降到1.708 (ε = 0.6),阶梯降温多次变形平均晶粒纵横比从2.077 (ε = 0.2)下降到1.781 (ε = 0.6)。即恒温多次变形时,随变形程度增加,晶粒尺寸更加细小、晶粒形状更趋于等轴状(这与图2a~c吻合)。而阶梯降温三次变形(ε = 0.6)则比恒温三次变形(ε = 0.6)晶粒尺寸更加细小,因此本工作中300℃是AZ80镁合金晶粒细化的适宜变形温度。

图3

图3   恒温、阶梯降温2类变形工艺的平均晶粒尺寸与平均晶粒纵横比变化

Fig.3   Average grain sizes (a) and average grain shape aspect ratios (b) of constant-temperature and step-cooling deformation processes


图4为恒温、阶梯降温2类变形工艺下的晶界分布图。如图4a所示,恒温变形时存在大量“弓弯”晶界(如红色箭头所示),由于压缩变形导致材料内部产生应变,进而导致晶界滑移,“弓弯”晶界成为动态再结晶的潜在形核中心[20,21]。恒温一次变形(ε = 0.2) (图4a)时,晶界和亚晶界分布不均匀,随着变形程度(ε = 0.2、0.4、0.6)增加,原始晶粒中亚晶界从晶粒内部向晶界迁移并逐渐减少,这是因为亚晶界的可动性,随着压缩变形进行亚晶界逐渐被大晶界所吞噬[22]。相比恒温三次变形(ε = 0.6) (图4c),阶梯降温三次变形(ε = 0.6) (图4d)中亚晶界数量较多并且分布不均匀,这是由于外加应力作用的结果[22]

图4

图4   恒温、阶梯降温2类变形工艺的晶界分布

Fig.4   Grain boundaries distributions of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The green lines represent subgrain boundaries, and the grain boundaries indicated by the red arrows are the bow-bend grain boundaries)


图5为恒温、阶梯降温2类变形工艺的晶粒尺寸图。可以观察到典型的“项链”结构,这通常被认为是动态再结晶的重要特征,表明恒温、阶梯降温2类变形工艺均发生了动态再结晶。

图5

图5   恒温、阶梯降温2类变形工艺的晶粒尺寸图

Fig.5   Grain size diagrams of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The colored small grains are dynamically recrystallized grains, the red grains are basal orientation, and the other colored grains are non-basal orientation)


图6为恒温、阶梯降温2类变形工艺的大角度晶界(θ > 10°)、小角度晶界(θ ≤ 10°)占比图与动态再结晶占比图。如图6a所示,5°~15°范围内晶界占比最大只有6%,其占比较少,因此,本工作将重点讨论晶界取向差< 5°、> 15° 2类,不再讨论5°~15°部分。由图6a可知,恒温一次变形时小角度晶界和大角度晶界占比分别为57%和39%;恒温二次变形时2者占比分别为39%和55%;恒温三次变形时2者占比分别为35%和59%。即恒温多次变形时,随着变形程度增加,小角度晶界逐渐减少而大角度晶界逐渐增加。与恒温三次变形相比,阶梯降温三次变形时,小角度晶界和大角度晶界占比分别为73%和25%,即小角度晶界增加而大角度晶界减小。

图6

图6   恒温、阶梯降温变形2类工艺晶界占比图与动态再结晶占比图

Fig.6   Grain boundary ratios (a) and dynamic recrystallization ratios (b) of constant-temperature and step-cooling deformation processes


图6b所示,恒温多次变形随着变形程度(ε = 0.2、0.4、0.6)增加,动态再结晶占比分别为4.3%、26.1%和42.5%,而阶梯降温三次变形(ε = 0.6)动态再结晶占比为22.9%。即恒温多次变形动态再结晶程度随变形程度增加而增加,这是由于随着热压缩变形量增加,连续动态再结晶(CDRX)起始于小角度晶界且晶格位错连续积累,随着小角度晶界逐渐转变为大角度晶界,动态再结晶逐渐增多[23],这与图6a结果相吻合。

由图56结果可知,恒温三次变形更有利于动态再结晶发生。

图7为恒温、阶梯降温2类变形工艺的取向差图。在图中“Correlated”表示相邻晶粒取向差分布,“Uncorrelated”表示不相邻晶粒取向差分布,“Rondom”表示随机或理论取向差分布。由图7a可知,恒温一次变形后,相邻晶粒取向差呈“双峰”分布,分别在2°和86°左右出现峰值。如图7b~d可知,分别在2°、30°和86°左右出现了峰值,但取向差在2°左右的峰值仍然比较高,这是由于压缩变形所致,同时取向差在30°左右出现峰值,这是由于六方结构的六次对称轴限制,2个理想(0001)晶粒间最大取向差是30°,转角为<0001>[24]。由图7a~d知,2种工艺均在86°左右出现峰值,表明恒温、阶梯降温2类变形工艺均存在{101¯2}<12¯10>拉伸孪晶,从图7cd可知,恒温三次变形的{101¯2}<12¯10>拉伸孪晶含量为0.010,而阶梯降温三次变形的{101¯2}<12¯10>拉伸孪晶含量为0.015,即阶梯降温三次变形(ε = 0.6)比恒温三次变形(ε = 0.6)具有更多{101¯2}<12¯10>拉伸孪晶。“不相邻晶粒取向差”分布随着“相邻晶粒取向差”峰值进行变换,在图7a~d中“不相邻晶粒取向差”分布与“理论取向差”分布在30°处差异较大,故在恒温多次变形、阶梯降温多次变形中均有明显织构产生。

图7

图7   恒温、阶梯降温变形工艺下的取向差统计图

Fig.7   Misorientation distributions of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)


2.2 位错密度演化

为了定量研究不同变形工艺下位错密度演化,利用EBSD取向数据的局部取向差计算几何必需位错密度(ρGND)演化规律,采用核平均取向差(KAM)方法[17]

ρGND=2θub

式中,θ表示局部取向差平均值,b表示Burger矢量模,u表示单位长度。图8为恒温、阶梯降温2类变形工艺GND密度分布图。从图8a~c可以看出,恒温多次变形随着变形程度增加,GND密度总体水平下降且分布不均匀。相比恒温三次变形(图8c),阶梯降温三次变形(图8d) GND密度较高且分布不均匀。

图8

图8   恒温、阶梯降温2类变形工艺的几何必需位错密度分布图

Fig.8   Geometrically necessary dislocation (GND) density distribution maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The green is the dislocation concentration area, and the blue is the dislocation-free area)


图9为恒温、阶梯降温2类变形工艺的GND密度统计图。从图9a~c可知,恒温多次变形的GND密度分别为1.33 × 1013、0.93 × 1013和1.10 × 1013 m-2。即恒温多次变形时,随变形程度(ε = 0.2、0.4、0.6)增加,GND密度出现先降低、后升高的变化趋势。由图9d知,阶梯降温三次变形(ε = 0.6)的GND密度为1.91 × 1013 m-2。相比恒温三次变形(ε = 0.6),阶梯降温三次变形(ε = 0.6)的GND密度更高。

图9

图9   恒温、阶梯降温变形工艺的几何必需位错密度(ρGND)统计图

Fig.9   Geometrical necessary dislocation density (ρGND) statistical maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)


2.3 Schmid因子变化

图10为恒温、阶梯降温2类变形工艺的晶粒Schmid因子分布图。不同的颜色代表不同晶格变形能力,晶体由“硬取向”向“软取向”转变时,颜色相应从蓝色到红色。为了更直观地分析恒温多道次变形和阶梯降温多道次变形,图11给出了不同变形条件下AZ80镁合金的晶粒Schmid因子分布直方图。

图10

图10   恒温、阶梯降温变形工艺的Schmid因子分布图

Fig.10   Schmid factor distribution maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The blue is hard orientation, the red is soft orientation, and other colors are between hard orientation and soft orientation)


图11

图11   恒温、阶梯降温变形工艺的Schmid因子分布直方图

Fig.11   Schmid factor statistical maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)


图11所示,当Schmid因子从0到0.5变化时,晶体由硬取向向软取向转变。恒温一次变形(ε = 0.2)、恒温二次变形(ε = 0.4)的Schmid因子分布并不均匀,主要集中在0.2~0.5之间,以软取向为主导,而恒温三次变形(ε = 0.6)的Schmid因子变得更均匀,大部分集中在0.1左右,以硬取向为主导,即经过恒温多次变形后材料中出现明显“加工硬化”现象(图11c)。由图11d知,阶梯降温三次变形(ε = 0.6)Schmid因子主要集中在“中间部分”(0.2~0.3之间) (与图10情况一致),表明阶梯降温三次变形并未出现很强烈的“加工硬化”现象,而是介于软化与加工硬化之间,故阶梯降温三次变形(ε = 0.6)比恒温三次变形(ε = 0.6)更有利于塑性变形。

2.4 变形过程中织构演化

图12给出了恒温、阶梯降温2类变形工艺的织构演化过程。恒温一次变形(ε = 0.2)极密度最大为17.72 (图12a),恒温二次变形(ε = 0.4)极密度最大为15.03 (图12b),恒温三次变形(ε = 0.6)极密度最大为11.44 (图12c)。即恒温三次变形时,随变形程度(ε = 0.2、0.4、0.6)增加极密度逐渐减小,这是由于随着变形程度增加,再结晶程度不断增加而导致基面织构弱化。而阶梯降温三次变形(ε = 0.6)时,基面(0001)织构极密度最大为9.77 (图12d),相比于恒温三次变形,阶梯降温三次变形(ε = 0.6)极密度变得更小,这是因为拉伸孪晶增加(图7),织构得到弱化使塑性提升,这与文献[11]吻合。

图12

图12   恒温、阶梯降温2类变形工艺的极图

Fig.12   Pole figures of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (ED—extrusion direction, TD—transverse direction)


图13所示,通过与六方晶系镁合金中常见的几种理想织构取向分布函数(ODF)图[25]进行对比判断,恒温一次变形(ε = 0.2)主要存在{0001}<101¯0>基面织构;恒温二次变形(ε = 0.4)主要存在{112¯0}<1¯010>和{101¯0}<2¯110>柱面织构,恒温三次变形(ε = 0.6)则主要存在{0001}<112¯0>基面织构,阶梯降温三次变形(ε = 0.6)主要存在{112¯0}<1¯010>和{101¯0}<2¯110>柱面织构。

图13

图13   恒温、阶梯降温2类变形工艺的取向分布函数(ODF)图

Fig.13   Orientation distribution function (ODF) maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The red area is strong texture, the blue area is weak texture, and the texture intensity of the green area is between them; φ2—Euler angle)


3 分析讨论

3.1 多道次压缩变形镁合金织构演变

图1213可知,恒温三次变形时,随变形程度(ε = 0.2、0.4、0.6)增加,不仅极密度逐渐减小,而且织构类型也发生转变:基面织构→柱面织构→基面织构(见2.4节),但阶梯降温三次变形(ε = 0.6)主要是柱面织构,其主要原因是:(1) 动态再结晶的影响(图6)。经过不同路径压缩变形均伴随着动态再结晶的发生,而这会弱化基面织构。(2) 晶粒细化的影响。晶粒细化导致晶粒转动和晶界迁移更加容易,随着晶粒不断转动,使晶粒的取向发生变化(图2)。(3) GND密度的影响(图9)。阶梯降温三次变形(ε = 0.6)较恒温三次变形(ε = 0.6)的GND密度急剧增大,GND密度的升高阻碍孪晶生长和晶粒间旋转移动[19,26],使晶粒取向不易发生变化,因此阶梯降温三次变形主要为柱面织构。(4) 孪晶的影响(图7)。孪晶可以改变晶粒取向,阶梯降温三次变形(ε = 0.6)比恒温三次变形(ε = 0.6)产生更多86°{101¯2}<12¯10>拉伸孪晶,这导致基面织构弱化进而产生柱面织构。

3.2 晶界演化对孪晶的影响

孪晶能促使织构转变,而孪晶的形成主要受晶粒取向差、小角度晶界数量、GND密度3方面的影响。

(1) 晶粒取向差对孪晶形成的影响。晶粒取向差对孪晶影响主要表现在“是否能够增强晶界迁移能力(晶界迁移与晶界结构密切相关)”进而有利于孪晶形成。本工作中,恒温三次变形(ε = 0.6)、阶梯降温三次变形(ε = 0.6)局部晶粒取向差平均值分别为34.10°和16.36°,根据小角度晶界迁移阻力F=θZ(其中,Z为常数)可知,随θ减小,F减小,晶界迁移能力增强。阶梯降温三次变形(ε = 0.6)晶粒取向差(16.36°)较小,F减小,晶界迁移能力增强,故有利于孪晶形成,这与图7结果相吻合。由此可知,晶粒取向差越小,就越有利于孪晶的形成,从而改善塑性。

(2) 小角度晶界数量对孪晶形成的影响。小角度晶界(晶界结构的一种重要形式)数量对孪晶形成的影响主要表现在“是否产生足够亚结构区为孪晶形成提供能量”。本工作中,恒温三次变形、阶梯降温三次变形的小角度晶界占比分别为35%和73% (图6),且阶梯降温三次变形(ε = 0.6)小角度晶界占比(73%)增大不利于再结晶,这样“再结晶区减少”就迫使“亚结构区[26]增大”,从而为孪晶的形成提供了能量,因此小角度晶界数量增多(73%)有利于孪晶形成使塑性得到改善。

(3) GND密度是调控孪晶的另一个重要因素。文献[19,26]表明,GND密度增加会阻碍孪晶生长和晶粒间旋转。本工作中,恒温三次变形、阶梯降温三次变形的GND密度分别为1.10 × 1013和1.91 × 1013 m-2 (图9),阶梯降温三次变形(ε = 0.6) GND密度急剧增加,导致孪晶生长受到抑制,从而为孪晶形成提供更多空间,即GND密度也是影响孪晶形成的重要因素。

因此,阶梯降温三次变形(ε = 0.6)比恒温三次变形(ε = 0.6)出现更多孪晶主要原因是:(1) 低晶粒取向差使晶界迁移能力增强,从而促进孪晶形成;(2)小角度晶界增多使亚结构区增大,从而为孪晶形成提供能量;(3) GND密度增加使孪晶生长受阻,从而为孪晶形成提供空间。这样,阶梯降温三次变形(ε = 0.6)在3者共同作用下促使孪晶增多,从而改善了镁合金塑性。

3.3 塑性调控机理

根据2.4节变形过程中Schmid因子变化,恒温三次变形(ε = 0.6) Schmid因子表现为“硬化现象”(在0.1左右),而阶梯降温三次变形(ε = 0.6) Schmid因子介于“软化与硬化之间(0.2~0.3)”,即阶梯降温三次变形比恒温三次变形更有利于塑性变形,其主要原因是:(1) 恒温三次变形、阶梯降温三次变形的平均晶粒尺寸分别为14.152和10.197 μm,阶梯降温三次变形的晶粒更细小,即单位体积内晶粒更多,因此压缩变形时相同变形程度可分散到更多晶粒产生较均匀形变而不会引起裂纹过早形核与扩展。(2) 由于阶梯降温三次变形通过“晶粒取向差减小、小角度晶界增加、GND密度增加”3者共同作用,产生更多86°{101¯2}<12¯10>拉伸孪晶,进而有利于塑性变形。(3) 恒温三次变形过程中,织构类型发生转变(基面织构→柱面织构→基面织构),而阶梯降温三次变形促使更多非基面织构启动,柱面织构启动更有利于塑性改善。

综上,“晶粒尺寸、孪晶、织构3者综合作用”对AZ80塑性的调控明显优于“单一动态再结晶”对其塑性调控。

4 结论

(1) 恒温三次变形更有利于动态再结晶。恒温多道次变形随变形程度(ε = 0.2、0.4、0.6)增加,小角度晶界逐渐减少,大角度晶界逐渐增加;而阶梯降温多次变形随变形程度(ε = 0.2、0.4、0.6)增加,小角度晶界逐渐增多,大角度晶界减少,因此恒温三次变形(ε = 0.6)更有利于动态再结晶,而阶梯降温三次变形(ε = 0.6)则不利于动态再结晶。

(2) 阶梯降温三次变形(ε = 0.6)工艺更有利于塑性变形。主要原因是阶梯降温三次变形(ε = 0.6) 比恒温三次变形(ε = 0.6)晶粒尺寸更细小且产生更多孪晶,阶梯降温三次变形(ε = 0.6)主要为非基面织构(柱面织构),而恒温三次变形(ε = 0.2、0.4、0.6)过程中织构类型发生转变(基面织构→柱面织构→基面织构)。

(3) 晶粒取向差减小、小角度晶界增多、几何必需位错密度增加是导致阶梯降温三次变形(ε = 0.6)出现更多86°{101¯2}<12¯10>拉伸孪晶的主要原因。

参考文献

Yang Z, Li J P, Zhang J X, et al.

Review on research and development of magnesium alloys

[J]. Acta Metall. Sin. (Engl. Lett.), 2008, 21: 313

DOI      URL     [本文引用: 1]

Cai Y, Sun C Y, Wan L, et al.

Study on the dynamic recrystallization softening behavior of AZ80 magnesium alloy

[J]. Acta Metall. Sin., 2016, 52: 1123

DOI      [本文引用: 1]

Magnesium alloys are considered as one of the lightest structural metallic materials with excellent properties such as high specific strength, superior damping characteristics and electromagnetic shielding performance. In order to improve the mechanical properties of magnesium alloys, the hot rolling, hot extrusion and other hot forming processes are often introduced to produce the high performance parts. Both of the two softening mechanisms, dynamic recovery and dynamic recrystallization (DRX), occur during the hot deformation. As an important softening mechanism in hot processing, DRX is beneficial to obtaining fine grains structure, eliminating defects and improving mechanical properties for magnesium alloys. In this work, isothermal compression tests of AZ80 magnesium alloy were conducted on Gleeble thermo-mechanical simulator in the temperature range of 200 to 400 ℃ and strain rate range of 0.001 to 1 s-1. In view of the dynamic hardening and softening mechanisms, the softening behavior of AZ80 magnesium alloy, dominated by dynamic recrystallization, was depicted. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution which was indicated by the strain rate sensitivity value based on the dynamic material model. To quantify the dynamic recrystallization softening behavior by the strain rate sensitivity (SRS) value, the SRS value distribution maps were constructed depending on various temperatures and strain rates. Therefore, the critical conditions and evolution process were studied in terms of temperatures and strain rates, while features of the SRS value distribution maps at different strains were deeply investigated. It can be concluded that the value of dynamic recrystallization critical condition decreases and dynamic recrystallization volume fraction increases when the temperature increases and strain rate decreases during the deformation. The strain rate sensitivity was positive correlated with the dynamic recrystallization volume fraction. It has been verified effectively by the analysis of microstructure that the region in which the strain rate sensitivity value is above 0.21 corresponds to the higher dynamic recrystallization volume fraction and lower strain rate.

蔡 贇, 孙朝阳, 万 李 .

AZ80镁合金动态再结晶软化行为研究

[J]. 金属学报, 2016, 52: 1123

[本文引用: 1]

Yasi J A, Hector Jr L G, Trinkle D R.

First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties

[J]. Acta Mater., 2010, 58: 5704

DOI      URL    

Beer A G, Barnett M R.

The post-deformation recrystallization behaviour of magnesium alloy Mg-3Al-1Zn

[J]. Scr. Mater., 2009, 61: 1097

DOI      URL     [本文引用: 1]

Guo Q, Yan H G, Chen Z H, et al.

Grain refinement in as-cast AZ80 Mg alloy under large strain deformation

[J]. Mater. Charact., 2007, 58: 162

DOI      URL     [本文引用: 1]

Li J Q, Liu J, Cui Z S.

Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate

[J]. Mater. Sci. Eng., 2015, A643: 32

[本文引用: 1]

Zhao Z D, Chen Q, Hu C K, et al.

Microstructure and mechanical properties of SPD-processed an as-cast AZ91D+Y magnesium alloy by equal channel angular extrusion and multi-axial forging

[J]. Mater. Des., 2009, 30: 4557

DOI      URL     [本文引用: 1]

Nie X, Dong S, Wang F H, et al.

Effects of holding time and Zener-Hollomon parameters on deformation behavior of cast Mg-8Gd-3Y alloy during double-pass hot compression

[J]. J. Mater. Sci. Technol., 2018, 34: 2035

DOI      [本文引用: 1]

Double-pass hot compression tests were carried out over a wide range of holding time (0-180 s) and Zener-Hollomon parameter (1.6E15-1.3E20) to study the deformation behavior of cast Mg-8Gd-3Y alloy. The flow curves show obvious work hardening and strain softening stages, leading to the peak stress of double-pass hot compression. Holding time and Zener-Hollomon parameter can significantly affect the second pass peak stress. It is found that increasing the holding time can cause a higher peak stress in the second pass deformation. The second pass stress reaches the peak stress of 71 MPa at Zener-Hollomom parameter of 1.6E15. When the parameter rises to 1.3E20, the second pass peak goes up to 237 MPa. In addition, the second pass peak stress is significantly higher than the unloading stress, which is opposite to the flow behavior of aluminum alloys. Residual stored deformation energy caused by the first pass deformation could be consumed by metadynamic recrystallization. Therefore, more strain energy is required for subsequent dynamic recrystallization, resulting in hardening behavior. A hardening fraction is defined to describe the deformation behavior quantitatively, which shows a positive correlation with the metadynamic recrystallization fraction. The metadynamic recrystallization leads to grain growth at the inter pass holding stage, diminishing dynamic recrystallization nucleation positions in the second pass deformation.

Zhang J L, Xie H, Ma Y, et al.

Grain growth model of ultra-fine grain AZ80 magnesium alloy multi-directionally forged during the isothermal heating process

[J]. Mater. Sci., 2019, 25: 1392

DOI      URL     [本文引用: 1]

Deng L P, Cui K X, Wang B S, et al.

Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature

[J]. Acta Metall. Sin., 2019, 55: 976

[本文引用: 1]

邓丽萍, 崔凯旋, 汪炳叔 .

AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究

[J]. 金属学报, 2019, 55: 976

DOI      [本文引用: 1]

对AZ31镁合金在室温进行多道次压缩变形,利用EBSD技术研究其微观组织和织构演变,分析孪晶在细化晶粒和调控织构方面发挥的作用。结果表明:多道次压缩过程中的组织和织构演变主要受{101ˉ2}拉伸孪生影响,道次应变量越大,织构变化越明显,每道次压缩后,利于拉伸孪生的晶粒取向发生孪生转到压缩轴附近,从而弱化初始基面织构,而退孪晶的发生则不利于细化晶粒和弱化织构。在多道次压缩过程中,孪生Schmid准则支配着变形中的{101ˉ2}孪晶变体的选择,从而控制织构的演变。残留的基体、预变形产生的孪晶与后续变形中产生的孪晶片层相互交叉,分割细化晶粒;道次变形量会影响多向变形过程每道次孪晶的激活量和孪晶片层的形貌,从而影响晶粒的细化程度。

Song G S, Zhao Y Y, Zhang S H, et al.

Effect of texture on deformation mechanism of AZ31 Magnesium alloy warm compression

[J]. Chin. J. Nonferrous Met., 2018, 28: 2206

[本文引用: 2]

宋广胜, 赵原野, 张士宏 .

织构对AZ31镁合金温热压缩变形机制影响

[J]. 中国有色金属学报, 2018, 28: 2206

[本文引用: 2]

Tang L Q, Jiang F L, Teng J, et al.

Strain path dependent evolutions of microstructure and texture in AZ80 magnesium alloy during hot deformation

[J]. J. Alloys Compd., 2019, 806: 292

DOI      URL     [本文引用: 1]

Zhou X J, Zhang J, Chen X M, et al.

Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment

[J]. J. Alloys Compd., 2019, 787: 551

DOI      URL     [本文引用: 1]

Khosravani A, Scott J, Miles M P, et al.

Twinning in magnesium alloy AZ31B under different strain paths at moderately elevated temperatures

[J]. Int. J. Plast., 2013, 45: 160

DOI      URL     [本文引用: 1]

Yan Z F, Wang D H, He X L, et al.

Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect

[J]. Mater. Sci. Eng., 2018, A723: 212

[本文引用: 1]

Quan G Z, Shi Y, Wang Y X, et al.

Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data

[J]. Mater. Sci. Eng., 2011, A528: 8051

[本文引用: 1]

Ma X L, Huang C X, Moering J, et al.

Mechanical properties of copper/bronze laminates: Role of interfaces

[J]. Acta Mater., 2016, 116: 43

DOI      URL     [本文引用: 2]

Xie C, Wang Y N, Fang Q H, et al.

Effects of cooperative grain boundary sliding and migration on the particle cracking of fine-grained magnesium alloys

[J]. J. Alloys Compd., 2017, 704: 641

DOI      URL     [本文引用: 1]

Khosravani A, Fullwood D T, Adams B L, et al.

Nucleation and propagation of {10 1 ¯ 2} twins in AZ31 magnesium alloy

[J]. Acta Mater., 2015, 100: 202

DOI      URL     [本文引用: 3]

Sun D K, Chang C P, Kao P W.

Microstructural aspects of grain boundary bulge in a dynamically recrystallized Mg-Al-Zn alloy

[J]. Metall. Mater. Trans., 2010, 41A: 1864

[本文引用: 1]

Liu Z G, Li P J, Xiong L T, et al.

High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy

[J] Mater. Sci. Eng., 2017, A680: 259

[本文引用: 1]

Rupert T J, Gianola D S, Gan Y, et al.

Experimental observations of stress-driven grain boundary migration

[J]. Science, 2009, 326: 1686

DOI      PMID      [本文引用: 2]

In crystalline materials, plastic deformation occurs by the motion of dislocations, and the regions between individual crystallites, called grain boundaries, act as obstacles to dislocation motion. Grain boundaries are widely envisaged to be mechanically static structures, but this report outlines an experimental investigation of stress-driven grain boundary migration manifested as grain growth in nanocrystalline aluminum thin films. Specimens fabricated with specially designed stress and strain concentrators are used to uncover the relative importance of these parameters on grain growth. In contrast to traditional descriptions of grain boundaries as stationary obstacles to dislocation-based plasticity, the results of this study indicate that shear stresses drive grain boundaries to move in a manner consistent with recent molecular dynamics simulations and theoretical predictions of coupled grain boundary migration.

Yu D L, Zhang D F, Luo Y X, et al.

Microstructure evolution during high cycle fatigue in Mg-6Zn-1Mn alloy

[J]. Mater. Sci. Eng., 2016, A658: 108

[本文引用: 1]

Yang P, Hu Y S, Cui F E.

Texture investigation on the deformation mechanisms in magnesium alloy AZ31 deformed at high temperatures

[J]. Chin. J. Mater. Res., 2004, 18: 52

[本文引用: 1]

Deformation mechanisms of a magnesium alloys AZ31 deformed at high temperature in the presence of dynamic recrystallization and super-plasticity are investigated by texture analysis using X-ray diffraction and electron back scattering diffraction techniques. Results indicate that deformation by plastic slip inside grains still plays an important role due to the facts that preferred orientations are found in recrystallized grains and that some strongly elongated deformed grains are present in samples. Difference in texture can be detected in the new grains of samples with different initial textures and different slip mechanisms are ascribed to the elongated deformed grains in different samples. The improved plasticity due to increasing temperature in deformed grains with same orientation is discussed. Orientation mapping reveals a misorientation distribution of large amount of small angle grain boundaries and an orientation relationship of 30°<0001> among basal oriented grains which is due to the 6-fold crystallographic symmetry of hexagonal close-packed structure of magnesium.

杨 平, 胡轶嵩, 崔凤娥.

镁合金AZ31高温形变机制的织构分析

[J]. 材料研究学报, 2004, 18: 52

[本文引用: 1]

Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005: 329

[本文引用: 1]

陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005: 329

[本文引用: 1]

Li Z L, Tian D K.

Microstructure evolution of AZ80 magnesium alloy under different states

[J]. Rare Met. Mater. Eng., 2021, 50: 639

[本文引用: 3]

李振亮, 田董扩.

不同状态条件下AZ80镁合金微观组织演化

[J]. 稀有金属材料与工程, 2021, 50: 639

[本文引用: 3]

/