Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 323-332    DOI: 10.11900/0412.1961.2022.00036
  研究论文 本期目录 | 过刊浏览 |
脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理
袁涛, 赵晓虎, 蒋晓青(), 任学磊, 李博阳
北京工业大学 汽车结构部件先进制造技术教育部工程研究中心 北京 100124
Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy
YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing(), REN Xuelei, LI Boyang
Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China
引用本文:

袁涛, 赵晓虎, 蒋晓青, 任学磊, 李博阳. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理[J]. 金属学报, 2024, 60(3): 323-332.
Tao YUAN, Xiaohu ZHAO, Xiaoqing JIANG, Xuelei REN, Boyang LI. Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy[J]. Acta Metall Sin, 2024, 60(3): 323-332.

全文: PDF(4118 KB)   HTML
摘要: 

在焊接热处理过程中,通过施加电流脉冲对熔池附加的振动效果可以有效改善焊缝成形差、晶粒粗大等问题。本工作通过对常规焊缝、传统脉冲电流焊缝以及复合脉冲电流焊缝的晶粒尺寸分析,探讨了脉冲电流对Al-Mg合金组织细化的影响及晶粒细化的机制。对于传统脉冲电流,当频率由0 Hz升高到100 Hz时,平均晶粒尺寸由78.2 μm降至53.3 μm,细化程度提高约30%。在传统脉冲电流波形上复合了低频脉冲电流后,晶粒尺寸最小可达到48.2 μm,细化效果达到近40%。对各焊缝区显微组织的EBSD结果表明,施加脉冲电流后小尺寸晶粒分布明显增加,且大角度晶界占比明显增加。热力学以及EDS分析结果表明晶粒细化的主要机制为枝晶破碎。

关键词 等离子弧焊Al-Mg合金复合脉冲电流晶粒细化枝晶破碎    
Abstract

During welding, the vibration effect of applying a pulse current on the molten pool can effectively improve weld formation and refine grains. The effect of pulse current on grain refinement and its mechanism were studied for Al-Mg alloy welds fabricated by conventional plasma welding (PAW), PAW with conventional pulse current, and PAW with composite pulse current. The grain size produced by conventional PAW was 78.2 μm, whereas the average grain size was reduced from 78.2 μm to 53.3 μm with increasing conventional pulse current frequency from 0 Hz to 100 Hz; in addition, the degree of grain refinement increased by about 30%. However, the minimum grain size was 48.2 μm, and the grain refinement effect can reach nearly 40% by combining low-frequency pulse current with conventional pulse current. The proportion of small grains and high-angle grain boundaries increased significantly after applying the composite pulse current. The additional oscillation effect of the composite pulse current can effectively eliminate coarse grains during the solidification of the weld pool. The main mechanism of grain refinement is dendrite fragmentation, which is discussed through thermodynamics and composition.

Key wordsPAW    Al-Mg alloy    composite pulse current    grain refinement    dendrite fragmentation
收稿日期: 2022-01-25     
ZTFLH:  TG47  
基金资助:国家自然科学基金项目(51704013);北京市教委基金项目(KM201810005016);北京工业大学科技基金项目(ykj-2018-00325)
通讯作者: 蒋晓青,xqj225@hotmail.com,主要从事焊接冶金、搅拌摩擦焊等方面的研究
Corresponding author: JIANG Xiaoqing, Tel: 13240290506, E-mail: xqj225@hotmail.com
作者简介: 袁 涛,男,1987年生,副教授,博士
图1  实验焊接设备及常规脉冲电流和复合脉冲电流的电流波形

Sample

No.

Base

current / A

Peak

current / A

First pulse frequency / HzFirst peak time percent / %

Plasma gas

flux / (L·min-1)

Shielding gas

flux / (L·min-1)

C0180- -1010
S19021020751010
S29021040751010
S39021060751010
S49021080751010
S590210100751010
表1  等离子传统脉冲电流方法的晶粒细化效果探究实验设计

Sample

No.

Base

current / A

Peak

current / A

First pulse frequency / HzSecond pulse frequency / HzFirst peak time percent / %Second peak time percent / %
C0180----
D1902105027550
D2902105047550
D3902105067550
D4902105087550
D59021050107550
表2  等离子复合脉冲电流方法的晶粒细化效果探究实验设计
图2  传统脉冲电流等离子弧焊焊缝上表面偏光图
图3  传统脉冲电流下焊缝晶粒尺寸变化
图4  传统脉冲电流等离子弧焊焊缝横截面偏光图
图5  复合脉冲电流等离子弧焊焊缝上表面偏光图
图6  复合脉冲电流下晶粒尺寸变化
图7  晶粒取向、晶粒尺寸分布及晶界角分布图
图8  不同类型脉冲电流对焊缝晶粒尺寸和大角度晶界占比的影响
图9  C0、S4和D4样品的极图
图10  温度梯度和生长速率对凝固组织形貌的影响
图11  焊缝EDS分析结果
1 Kruth J P, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing [J]. CIRP Annals, 2007, 56: 730
doi: 10.1016/j.cirp.2007.10.004
2 Santos M C, Machado A R, Sales W F, et al. Machining of aluminum alloys: A review [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 3067
doi: 10.1007/s00170-016-8431-9
3 Spierings A B, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting [J]. Mater. Des., 2017, 115: 52
doi: 10.1016/j.matdes.2016.11.040
4 Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
5 Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Prog. Mater. Sci., 2004, 49: 389
doi: 10.1016/S0079-6425(03)00031-8
6 Zhang Z Q, He C S, Li Y, et al. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43: 1
doi: 10.1016/j.jmst.2019.12.007
7 Dai W L. Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6 [J]. Mater. Lett., 2003, 57: 2447
doi: 10.1016/S0167-577X(02)01262-4
8 Rao S R K, Reddy G M, Kamaraj M, et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds [J]. Mater. Sci. Eng., 2005, A404: 227
9 Babu N K, Talari M K, Pan D, et al. Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers [J]. Mater. Chem. Phys., 2012, 137: 543
doi: 10.1016/j.matchemphys.2012.09.056
10 Liotti E, Lui A, Vincent R, et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy [J]. Acta Mater., 2014, 70: 228
doi: 10.1016/j.actamat.2014.02.024
11 Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool [J]. Acta Mater., 2016, 106: 144
doi: 10.1016/j.actamat.2016.01.016
12 Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
13 Villaret V, Deschaux-Beaume F, Bordreuil C. A solidification model for the columnar to equiaxed transition in welding of a Cr-Mo ferritic stainless steel with Ti as inoculant [J]. J. Mater. Process. Technol., 2016, 233: 115
doi: 10.1016/j.jmatprotec.2016.02.017
14 Bermingham M J, McDonald S D, Dargusch M S, et al. The mechanism of grain refinement of titanium by silicon [J]. Scr. Mater., 2008, 58: 1050
doi: 10.1016/j.scriptamat.2008.01.041
15 Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel [J]. Mater. Sci. Eng., 2006, A430: 242
16 Chen Z N, Kang H J, Fan G H, et al. Grain refinement of hypoeutectic Al-Si alloys with B [J]. Acta Mater., 2016, 120: 168
doi: 10.1016/j.actamat.2016.08.045
17 Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting [J]. J. Alloys Compd., 2013, 579: 415
doi: 10.1016/j.jallcom.2013.06.087
18 AlMangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment [J]. J. Mater. Process. Technol., 2017, 244: 344
doi: 10.1016/j.jmatprotec.2017.01.019
19 Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
20 Wang E Z, Gao T, Nie J F, et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys [J]. J. Alloys Compd., 2014, 594: 7
doi: 10.1016/j.jallcom.2014.01.145
21 Easton M A, Schiffl A, Yao J, et al. Grain refinement of Mg-Al(-Mn) alloys by SiC additions [J]. Scr. Mater., 2006, 55: 379
doi: 10.1016/j.scriptamat.2006.04.014
22 Kou S, Le Y. Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy [J]. Metall. Trans., 1985, 16A: 1345
23 Yuan T, Luo Z, Kou S. Grain refining of magnesium welds by arc oscillation [J]. Acta Mater., 2016, 116: 166
doi: 10.1016/j.actamat.2016.06.036
24 Jiang Z G, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy [J]. Mater. Des., 2020, 186: 108195
doi: 10.1016/j.matdes.2019.108195
25 Tseng K H, Chou C P. The effect of pulsed GTA welding on the residual stress of a stainless steel weldment [J]. J. Mater. Process. Technol., 2002, 123: 346
doi: 10.1016/S0924-0136(02)00004-3
26 Balasubramanian V, Ravisankar V, Reddy G M. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy [J]. Mater. Sci. Eng., 2007, A459: 19
27 Balasubramanian V, Ravisankar V, Madhusudhan Reddy G. Influences of pulsed current welding and post weld aging treatment on fatigue crack growth behaviour of AA7075 aluminium alloy joints [J]. Int. J. Fatigue, 2008, 30: 405
doi: 10.1016/j.ijfatigue.2007.04.012
28 Palani P K, Murugan N. Selection of parameters of pulsed current gas metal arc welding [J]. J. Mater. Process. Technol., 2006, 172: 1
doi: 10.1016/j.jmatprotec.2005.07.013
29 Liu A H, Tang X H, Lu F G. Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding [J]. Mater. Des., 2013, 50: 149
doi: 10.1016/j.matdes.2013.02.087
30 Pan J J, Hu S S, Yang L J, et al. Investigation of molten pool behavior and weld bead formation in VP-GTAW by numerical modelling [J]. Mater. Des., 2016, 111: 600
doi: 10.1016/j.matdes.2016.09.022
31 Wang Y P, Qi B J, Cong B Q, et al. Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding [J]. J. Manuf. Process., 2018, 34: 179
doi: 10.1016/j.jmapro.2018.06.006
32 Wang Y P, Cong B Q, Qi B J, et al. Process characteristics and properties of AA2219 aluminum alloy welded by double pulsed VPTIG welding [J]. J. Mater. Process. Technol., 2019, 266: 255
doi: 10.1016/j.jmatprotec.2018.11.015
33 Bosworth M R, Deam R T. Influence of GMAW droplet size on fume formation rate [J]. J. Phys. D: Appl. Phys., 2000, 33: 2605
doi: 10.1088/0022-3727/33/20/313
34 Da Silva C L M, Scotti A. The influence of double pulse on porosity formation in aluminum GMAW [J]. J. Mater. Process. Technol., 2006, 171: 366
doi: 10.1016/j.jmatprotec.2005.07.008
35 Liu A H, Tang X H, Lu F G. Weld pool profile characteristics of Al alloy in double-pulsed GMAW [J]. Int. J. Adv. Manuf. Technol., 2013, 68: 2015
doi: 10.1007/s00170-013-4808-1
36 Yao P, Zhou K, Tang H Q. Effects of operational parameters on the characteristics of ripples in double-pulsed GMAW process [J]. Materials, 2019, 12: 2767
doi: 10.3390/ma12172767
37 Wang L L, Wei H L, Xue J X, et al. A pathway to microstructural refinement through double pulsed gas metal arc welding [J]. Scr. Mater., 2017, 134: 61
doi: 10.1016/j.scriptamat.2017.02.034
38 Wang Y P, Cong B Q, Qi B J, et al. Influence of low-pulsed frequency on arc profile and weld formation characteristics in double-pulsed VPTIG welding of aluminium alloys [J]. J. Manuf. Process., 2020, 58: 1211
doi: 10.1016/j.jmapro.2020.09.025
39 Wang L L, Xue J X. Perspective on double pulsed gas metal arc welding [J]. Appl. Sci., 2017, 7: 894
doi: 10.3390/app7090894
40 Zhang P L, Jia Z Y, Yu Z S, et al. A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys [J]. Opt. Laser Technol., 2021, 140: 107094
doi: 10.1016/j.optlastec.2021.107094
41 Wang Y J, Chen M A, Wu C S. HF pulse effect on microstructure and properties of AC TIG butt-welded joint of 6061Al alloy [J]. J. Manuf. Process., 2020, 56: 878
doi: 10.1016/j.jmapro.2020.05.055
42 Wang Z M, Jiang D H, Wu J W, et al. A review on high-frequency pulsed arc welding [J]. J. Manuf. Processes, 2020, 60: 503
doi: 10.1016/j.jmapro.2020.10.054
[1] 刘勇, 曾刚, 刘洪, 王煜, 李建龙. Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
[2] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[4] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[6] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[7] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[8] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[9] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[10] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[11] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[12] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[13] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[14] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[15] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.