|
|
脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理 |
袁涛, 赵晓虎, 蒋晓青( ), 任学磊, 李博阳 |
北京工业大学 汽车结构部件先进制造技术教育部工程研究中心 北京 100124 |
|
Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy |
YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing( ), REN Xuelei, LI Boyang |
Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China |
引用本文:
袁涛, 赵晓虎, 蒋晓青, 任学磊, 李博阳. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理[J]. 金属学报, 2024, 60(3): 323-332.
Tao YUAN,
Xiaohu ZHAO,
Xiaoqing JIANG,
Xuelei REN,
Boyang LI.
Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy[J]. Acta Metall Sin, 2024, 60(3): 323-332.
1 |
Kruth J P, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing [J]. CIRP Annals, 2007, 56: 730
doi: 10.1016/j.cirp.2007.10.004
|
2 |
Santos M C, Machado A R, Sales W F, et al. Machining of aluminum alloys: A review [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 3067
doi: 10.1007/s00170-016-8431-9
|
3 |
Spierings A B, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting [J]. Mater. Des., 2017, 115: 52
doi: 10.1016/j.matdes.2016.11.040
|
4 |
Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
|
5 |
Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Prog. Mater. Sci., 2004, 49: 389
doi: 10.1016/S0079-6425(03)00031-8
|
6 |
Zhang Z Q, He C S, Li Y, et al. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43: 1
doi: 10.1016/j.jmst.2019.12.007
|
7 |
Dai W L. Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6 [J]. Mater. Lett., 2003, 57: 2447
doi: 10.1016/S0167-577X(02)01262-4
|
8 |
Rao S R K, Reddy G M, Kamaraj M, et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds [J]. Mater. Sci. Eng., 2005, A404: 227
|
9 |
Babu N K, Talari M K, Pan D, et al. Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers [J]. Mater. Chem. Phys., 2012, 137: 543
doi: 10.1016/j.matchemphys.2012.09.056
|
10 |
Liotti E, Lui A, Vincent R, et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy [J]. Acta Mater., 2014, 70: 228
doi: 10.1016/j.actamat.2014.02.024
|
11 |
Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool [J]. Acta Mater., 2016, 106: 144
doi: 10.1016/j.actamat.2016.01.016
|
12 |
Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
|
13 |
Villaret V, Deschaux-Beaume F, Bordreuil C. A solidification model for the columnar to equiaxed transition in welding of a Cr-Mo ferritic stainless steel with Ti as inoculant [J]. J. Mater. Process. Technol., 2016, 233: 115
doi: 10.1016/j.jmatprotec.2016.02.017
|
14 |
Bermingham M J, McDonald S D, Dargusch M S, et al. The mechanism of grain refinement of titanium by silicon [J]. Scr. Mater., 2008, 58: 1050
doi: 10.1016/j.scriptamat.2008.01.041
|
15 |
Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel [J]. Mater. Sci. Eng., 2006, A430: 242
|
16 |
Chen Z N, Kang H J, Fan G H, et al. Grain refinement of hypoeutectic Al-Si alloys with B [J]. Acta Mater., 2016, 120: 168
doi: 10.1016/j.actamat.2016.08.045
|
17 |
Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting [J]. J. Alloys Compd., 2013, 579: 415
doi: 10.1016/j.jallcom.2013.06.087
|
18 |
AlMangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment [J]. J. Mater. Process. Technol., 2017, 244: 344
doi: 10.1016/j.jmatprotec.2017.01.019
|
19 |
Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
|
20 |
Wang E Z, Gao T, Nie J F, et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys [J]. J. Alloys Compd., 2014, 594: 7
doi: 10.1016/j.jallcom.2014.01.145
|
21 |
Easton M A, Schiffl A, Yao J, et al. Grain refinement of Mg-Al(-Mn) alloys by SiC additions [J]. Scr. Mater., 2006, 55: 379
doi: 10.1016/j.scriptamat.2006.04.014
|
22 |
Kou S, Le Y. Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy [J]. Metall. Trans., 1985, 16A: 1345
|
23 |
Yuan T, Luo Z, Kou S. Grain refining of magnesium welds by arc oscillation [J]. Acta Mater., 2016, 116: 166
doi: 10.1016/j.actamat.2016.06.036
|
24 |
Jiang Z G, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy [J]. Mater. Des., 2020, 186: 108195
doi: 10.1016/j.matdes.2019.108195
|
25 |
Tseng K H, Chou C P. The effect of pulsed GTA welding on the residual stress of a stainless steel weldment [J]. J. Mater. Process. Technol., 2002, 123: 346
doi: 10.1016/S0924-0136(02)00004-3
|
26 |
Balasubramanian V, Ravisankar V, Reddy G M. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy [J]. Mater. Sci. Eng., 2007, A459: 19
|
27 |
Balasubramanian V, Ravisankar V, Madhusudhan Reddy G. Influences of pulsed current welding and post weld aging treatment on fatigue crack growth behaviour of AA7075 aluminium alloy joints [J]. Int. J. Fatigue, 2008, 30: 405
doi: 10.1016/j.ijfatigue.2007.04.012
|
28 |
Palani P K, Murugan N. Selection of parameters of pulsed current gas metal arc welding [J]. J. Mater. Process. Technol., 2006, 172: 1
doi: 10.1016/j.jmatprotec.2005.07.013
|
29 |
Liu A H, Tang X H, Lu F G. Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding [J]. Mater. Des., 2013, 50: 149
doi: 10.1016/j.matdes.2013.02.087
|
30 |
Pan J J, Hu S S, Yang L J, et al. Investigation of molten pool behavior and weld bead formation in VP-GTAW by numerical modelling [J]. Mater. Des., 2016, 111: 600
doi: 10.1016/j.matdes.2016.09.022
|
31 |
Wang Y P, Qi B J, Cong B Q, et al. Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding [J]. J. Manuf. Process., 2018, 34: 179
doi: 10.1016/j.jmapro.2018.06.006
|
32 |
Wang Y P, Cong B Q, Qi B J, et al. Process characteristics and properties of AA2219 aluminum alloy welded by double pulsed VPTIG welding [J]. J. Mater. Process. Technol., 2019, 266: 255
doi: 10.1016/j.jmatprotec.2018.11.015
|
33 |
Bosworth M R, Deam R T. Influence of GMAW droplet size on fume formation rate [J]. J. Phys. D: Appl. Phys., 2000, 33: 2605
doi: 10.1088/0022-3727/33/20/313
|
34 |
Da Silva C L M, Scotti A. The influence of double pulse on porosity formation in aluminum GMAW [J]. J. Mater. Process. Technol., 2006, 171: 366
doi: 10.1016/j.jmatprotec.2005.07.008
|
35 |
Liu A H, Tang X H, Lu F G. Weld pool profile characteristics of Al alloy in double-pulsed GMAW [J]. Int. J. Adv. Manuf. Technol., 2013, 68: 2015
doi: 10.1007/s00170-013-4808-1
|
36 |
Yao P, Zhou K, Tang H Q. Effects of operational parameters on the characteristics of ripples in double-pulsed GMAW process [J]. Materials, 2019, 12: 2767
doi: 10.3390/ma12172767
|
37 |
Wang L L, Wei H L, Xue J X, et al. A pathway to microstructural refinement through double pulsed gas metal arc welding [J]. Scr. Mater., 2017, 134: 61
doi: 10.1016/j.scriptamat.2017.02.034
|
38 |
Wang Y P, Cong B Q, Qi B J, et al. Influence of low-pulsed frequency on arc profile and weld formation characteristics in double-pulsed VPTIG welding of aluminium alloys [J]. J. Manuf. Process., 2020, 58: 1211
doi: 10.1016/j.jmapro.2020.09.025
|
39 |
Wang L L, Xue J X. Perspective on double pulsed gas metal arc welding [J]. Appl. Sci., 2017, 7: 894
doi: 10.3390/app7090894
|
40 |
Zhang P L, Jia Z Y, Yu Z S, et al. A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys [J]. Opt. Laser Technol., 2021, 140: 107094
doi: 10.1016/j.optlastec.2021.107094
|
41 |
Wang Y J, Chen M A, Wu C S. HF pulse effect on microstructure and properties of AC TIG butt-welded joint of 6061Al alloy [J]. J. Manuf. Process., 2020, 56: 878
doi: 10.1016/j.jmapro.2020.05.055
|
42 |
Wang Z M, Jiang D H, Wu J W, et al. A review on high-frequency pulsed arc welding [J]. J. Manuf. Processes, 2020, 60: 503
doi: 10.1016/j.jmapro.2020.10.054
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|