Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1603-1612    DOI: 10.11900/0412.1961.2022.00304
  本期目录 | 过刊浏览 |
冷却速率对管线钢中非金属夹杂物成分演变的影响
张月鑫1, 王举金2, 杨文1(), 张立峰2()
1北京科技大学 冶金与生态工程学院 北京 100083
2北方工业大学 机械与材料工程学院 北京 100144
Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel
ZHANG Yuexin1, WANG Jujin2, YANG Wen1(), ZHANG Lifeng2()
1School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
引用本文:

张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
Yuexin ZHANG, Jujin WANG, Wen YANG, Lifeng ZHANG. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. Acta Metall Sin, 2023, 59(12): 1603-1612.

全文: PDF(3024 KB)   HTML
摘要: 

利用高温共聚焦扫描激光显微镜精准控制冷却速率,研究了冷却速率分别为800、600、400、200、100和5℃/min条件下管线钢中非金属夹杂物成分的演变,然后计算分析了夹杂物成分转变过程的热力学机理,最后建立了冷却过程夹杂物成分演变的动力学模型并自主编程进行求解,讨论了冷却速率和夹杂物直径对钢凝固和冷却过程中夹杂物成分演变的影响。结果表明,随着冷却速率由800℃/min降低到5℃/min,夹杂物中Al2O3含量由66.33%增至75.06%,CaS含量由1.07%增至10.55%,CaO含量由28.27%降至11.24%,MgO含量由4.33%降至3.15%。夹杂物数密度由76.15 mm-2降至15.28 mm-2,夹杂物平均直径先由2.09 μm缓慢降至1.62 μm,后又逐渐增大至2.65 μm。高温钢液中夹杂物的热力学平衡成分主要为41.71%CaO-50.76%Al2O3-6.50%MgO-1.03%SiO2,随着温度的降低,夹杂物逐渐由Al2O3-CaO-MgO转变为CaS-Al2O3-MgO-(CaO)。冷却速率对夹杂物中MgO和Al2O3含量的影响较小。夹杂物直径和冷却速率对夹杂物中CaO和CaS含量有显著影响,在钢的凝固冷却过程,夹杂物中CaS含量超过CaO含量的临界冷却速率与夹杂物直径存在直接关系,夹杂物直径为1和2 μm时,这一临界冷却速率分别为400和100℃/min,而当夹杂物直径大于5 μm时,这一转折冷却速率则远小于1℃/min。

关键词 管线钢冷却速率夹杂物热力学动力学    
Abstract

Controlling nonmetallic inclusions in steels is critical during the steelmaking process. Temperature affects the chemical equilibrium between steel and the inclusions, the composition of the inclusions changes with changes in temperature. During the solidification and cooling processes, the cooling rate is a significant factor affecting the temperature. Therefore, the composition of nonmetallic inclusions transforms during the solidification and cooling of steels. To study the evolution of the inclusion composition in pipeline steel at cooling rates of 800, 600, 400, 200, 100, and 5oC/min, high-temperature confocal scanning laser microscopy was employed to accurately control the temperature during the cooling process. The thermochemical software FactSage was employed to reveal the theoretical basis of the transformation of the inclusion composition. A kinetic model for the evolution of the inclusion composition in pipeline steel during the cooling process was established, and the effect of inclusion diameter and cooling rate on the transformation was analyzed. The results revealed that with the decrease in the cooling rate, the Al2O3 content in the inclusions increased from 66.33% to 75.06%, the CaS content increased from 1.07% to 10.55%, and the CaO content decreased from 28.27% to 11.24%. Further, the MgO content decreased from 4.33% to 3.15% during the cooling process. The number densities of the inclusions were 76.15 and 15.28 mm-2 at cooling rates of 800 and 5oC/min, respectively. As the cooling rate decreased, the average diameter of the inclusions first decreased from 2.09 to 1.62 μm and subsequently increased. The thermodynamic equilibrium composition of the inclusions in the molten steel was 41.71%CaO-50.76%Al2O3-6.50%MgO-1.03%SiO2. With a decrease in temperature, inclusions transformed from Al2O3-CaO-MgO to CaS-Al2O3-MgO-(CaO). The cooling rate had little effect on the MgO and Al2O3 contents in the inclusions. The inclusion diameter and cooling rate had an apparent influence on the CaO and CaS contents in the inclusions. The critical cooling rate at which the CaS content became greater than the CaO content was impacted by the inclusions' diameter. The critical cooling rates for inclusions with diameters of 1 and 2 μm were approximately 400 and 100oC/min, respectively, whereas the rates were much smaller than 1oC/min for inclusions with diameters larger than 5 μm.

Key wordspipeline steel    cooling rate    inclusion    thermodynamics    kinetics
收稿日期: 2022-06-20     
ZTFLH:  TF407  
基金资助:国家自然科学基金项目(U22A20171);国家自然科学基金项目(52304340)
通讯作者: 张立峰,zhanglifeng@ncut.edu.cn,主要从事钢铁冶金与冶金过程数值模拟研究;
杨 文,wenyang@ustb.edu.cn,主要从事钢中非金属夹杂物控制和连铸坯表面质量控制的研究
作者简介: 张月鑫,女,1996生,博士生
图1  试样的升降温过程示意图
图2  不同冷却速率下管线钢中夹杂物的成分分布
图3  不同冷却速率下夹杂物平均成分的变化
图4  不同冷却速率下夹杂物数密度和平均直径的变化
图5  不同冷却速率下不同直径夹杂物的数密度分布
图6  管线钢凝固冷却过程中物相的转变和夹杂物热力学平衡成分随温度的变化
ElementIn liquidIn δIn γ
Al3.5 × 10-095.9 × exp(-241186 / (RT )) / 100005.15 × exp(-245800 / (RT )) / 10000
Mg3.5 × 10-090.76 × exp(-224430 / (RT )) / 100000.055 × exp(-249366 / (RT )) / 10000
Ca3.5 × 10-090.76 × exp(-224430 / (RT )) / 100000.055 × exp(-249366 / (RT )) / 10000
S4.1 × 10-094.56 × exp(-214639 / (RT )) / 100002.4 × exp(-223426 / (RT )) / 10000
O2.7 × 10-090.0371 × exp(-96349 / (RT )) / 100005.75 × exp(-168454 / (RT )) / 10000
表1  Al、 Mg、Ca、S、O在液态、δ和γ钢中的扩散系数[26~28]
图7  不同冷却速率下2 μm直径的夹杂物成分计算值和实验值的对比
图8  夹杂物成分随着冷却速率和夹杂物直径的变化
图9  不同直径夹杂物成分随着冷却速率的变化
1 Deng W, Gao X H, Qin X M, et al. Impact fracture behavior of X80 pipeline steel[J]. Acta Metall. Sin., 2010, 46: 533
doi: 10.3724/SP.J.1037.2009.00461
1 邓 伟, 高秀华, 秦小梅 等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46: 533
2 Peng H H. Research on non-metallic inclusion control of quality pipeline steel[J]. Wide Heavy Plate, 2012, 18(4): 26
2 彭海红. 优质管线钢非金属夹杂物控制研究[J]. 宽厚板, 2012, 18(4): 26
3 Wu Y C, Li J G, Yan X L, et al. Research on the non-metallic inclusions in X70 pipeline cast slab[J]. Iron Steel Vanadium Titanium, 2009, 30(3): 44
3 吴雨晨, 李俊国, 闫小林 等. X70管线钢铸坯中非金属夹杂物的研究[J]. 钢铁钒钛, 2009, 30(3): 44
4 Zhu H Y, Zhao J X, Li J L, et al. Evolution of nonmetallic inclusions in pipeline steel during LF and VD refining process[J]. High Temp. Mater. Processes, 2020, 39: 424
doi: 10.1515/htmp-2020-0088
5 Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking[J]. Corros. Sci, 2011, 53: 1201
doi: 10.1016/j.corsci.2010.12.011
6 Wang X H, Li X G, Li Q, et al. Control of stringer shaped non-metallic inclusions of CaO-Al2O3 system in API X80 linepipe steel plates[J]. Steel Res. Int., 2014, 85: 155
doi: 10.1002/srin.v85.2
7 Zhen F, Liu J, Huang F, et al. Effect of the nonmetallic inclusions on the HIC behavior of X120 pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 145
7 镇 凡, 刘 静, 黄 峰 等. 夹杂物对X120管线钢氢致开裂的影响[J]. 中国腐蚀与防护学报, 2010, 30: 145
8 Lv Z A, Ni H W, Zhang H, et al. Evolution of MnS inclusions in Ti-bearing X80 pipeline steel[J]. J. Iron Steel Res. Int., 2017, 24: 654
doi: 10.1016/S1006-706X(17)30098-5
9 Ehara Y, Yokoyama S, Kawakami M. Control of formation of spinel inclusion in type 304 stainless steel by slag composition[J]. Tetsu Hagané, 2007, 93: 475
9 江原 靖弘, 横山 誠二, 川上 正博. SUS304ステンレス鋼中スピネル介在物生成のスラグ組成による制御[J]. 鉄と 鋼, 2007, 93: 475
10 Park J S, Park J H. Effect of slag composition on the concentration of Al2O3 in the inclusions in Si-Mn-killed steel[J]. Metall. Mater. Trans., 2014, 45B: 953
11 Miao K Y, Haas A, Sharma M, et al. In situ observation of calcium aluminate inclusions dissolution into steelmaking slag[J]. Metall. Mater. Trans., 2018, 49: 1612
doi: 10.1007/s11663-018-1303-y
12 Yan P C, Huang S G, Pandelaers L, et al. Effect of the CaO-Al2O3-based top slag on the cleanliness of stainless steel during secondary metallurgy[J]. Metall. Mater. Trans., 2013, 44: 1105
doi: 10.1007/s11663-013-9898-5
13 Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part I. Background, experimental techniques and analysis methods[J]. Metall. Mater. Trans., 2011, 42B: 711
14 Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part II. Results and discussion[J]. Metall. Mater. Trans., 2011, 42B: 720
15 Zhang Y X, Zhang L F, Chu Y P, et al. Transformation of inclusions in a complicated-deoxidized heavy rail steels during heating[J]. Steel Res. Int., 2020, 91: 2000120
doi: 10.1002/srin.v91.9
16 Cheng G, Li W F, Zhang X G, et al. Transformation of inclusions in solid GCr15 bearing steels during heat treatment[J]. Metals, 2019, 9: 642
doi: 10.3390/met9060642
17 Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in type 304 stainless steels during heat treatment[J]. Metall. Mater. Trans., 2017, 48B: 2281
18 Takahashi I, Sakae T, Yoshida T, et al. Changes of the nonmetallic inclusion by heating (Study on the nonmetallic inclusion in 18-8 stainless steel-II)[J]. Tetsu Hagané, 1967, 53: 350
18 中川 義隆, 百瀬 昭次, 高橋 市朗 等. 造塊·非金属介在物[J]. 鉄と 鋼, 1967, 53: 350
19 Yang W, Guo C B, Li C, et al. Transformation of inclusions in pipeline steels during solidification and cooling[J]. Metall. Mater. Trans., 2017, 48B: 2267
20 Zhang X L, Yang S F, Li J S, et al. Effect of heat treatment on oxide inclusion in Si-killed 304 stainless steel[J]. Iron Steel, 2018, 53(5): 32
20 张雪良, 杨树峰, 李京社 等. 热处理对硅脱氧304不锈钢内氧化物夹杂的影响[J]. 钢铁, 2018, 53(5): 32
21 Wang Y, Yang W, Zhang L F. Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel[J]. Steel Res. Int., 2019, 90: 1900027
doi: 10.1002/srin.v90.7
22 Chu Y P, Li W F, Ren Y, et al. Transformation of inclusions in linepipe steels during heat treatment[J]. Metall. Mater. Trans., 2019, 50: 2047
doi: 10.1007/s11663-019-01593-1
23 Ren Q, Zhang Y X, Ren Y, et al. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab[J]. J. Mater. Sci. Technol., 2020, 61: 147
doi: 10.1016/j.jmst.2020.05.035
24 Ren C Y, Zhang L F, Ren Y. A review on dissolution behavior of non-metallic inclusions in-situ observed using high temperature confocal scanning laser microscope[J]. J. Iron Steel Res., 2021, 33: 670
24 任昶宇, 张立峰, 任 英. 高温共聚焦显微镜原位观察非金属夹杂物溶解行为研究进展[J]. 钢铁研究学报, 2021, 33: 670
25 Ren Q, Zhang Y X, Zhang L F, et al. Prediction on the spatial distribution of the composition of inclusions in a heavy rail steel continuous casting bloom[J]. J. Mater. Res. Technol., 2020, 9: 5648
doi: 10.1016/j.jmrt.2020.03.090
26 Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification[J]. Metall. Mater. Trans., 1986, 17: 845
27 Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels[J]. Metall. Mater. Trans., 2001, 32A: 1755
28 Wang J J, Zhang L F, Zhang Y X, et al. Prediction of spatial composition distribution of inclusions in the continuous casting bloom of a bearing steel under unsteady casting[J]. ISIJ Int., 2021, 61: 824
doi: 10.2355/isijinternational.ISIJINT-2020-472
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[8] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[9] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[10] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[11] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[12] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[13] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[14] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[15] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.