|
|
冷却速率对管线钢中非金属夹杂物成分演变的影响 |
张月鑫1, 王举金2, 杨文1( ), 张立峰2( ) |
1北京科技大学 冶金与生态工程学院 北京 100083 2北方工业大学 机械与材料工程学院 北京 100144 |
|
Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel |
ZHANG Yuexin1, WANG Jujin2, YANG Wen1( ), ZHANG Lifeng2( ) |
1School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 2School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China |
引用本文:
张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
Yuexin ZHANG,
Jujin WANG,
Wen YANG,
Lifeng ZHANG.
Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. Acta Metall Sin, 2023, 59(12): 1603-1612.
1 |
Deng W, Gao X H, Qin X M, et al. Impact fracture behavior of X80 pipeline steel[J]. Acta Metall. Sin., 2010, 46: 533
doi: 10.3724/SP.J.1037.2009.00461
|
1 |
邓 伟, 高秀华, 秦小梅 等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46: 533
|
2 |
Peng H H. Research on non-metallic inclusion control of quality pipeline steel[J]. Wide Heavy Plate, 2012, 18(4): 26
|
2 |
彭海红. 优质管线钢非金属夹杂物控制研究[J]. 宽厚板, 2012, 18(4): 26
|
3 |
Wu Y C, Li J G, Yan X L, et al. Research on the non-metallic inclusions in X70 pipeline cast slab[J]. Iron Steel Vanadium Titanium, 2009, 30(3): 44
|
3 |
吴雨晨, 李俊国, 闫小林 等. X70管线钢铸坯中非金属夹杂物的研究[J]. 钢铁钒钛, 2009, 30(3): 44
|
4 |
Zhu H Y, Zhao J X, Li J L, et al. Evolution of nonmetallic inclusions in pipeline steel during LF and VD refining process[J]. High Temp. Mater. Processes, 2020, 39: 424
doi: 10.1515/htmp-2020-0088
|
5 |
Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking[J]. Corros. Sci, 2011, 53: 1201
doi: 10.1016/j.corsci.2010.12.011
|
6 |
Wang X H, Li X G, Li Q, et al. Control of stringer shaped non-metallic inclusions of CaO-Al2O3 system in API X80 linepipe steel plates[J]. Steel Res. Int., 2014, 85: 155
doi: 10.1002/srin.v85.2
|
7 |
Zhen F, Liu J, Huang F, et al. Effect of the nonmetallic inclusions on the HIC behavior of X120 pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 145
|
7 |
镇 凡, 刘 静, 黄 峰 等. 夹杂物对X120管线钢氢致开裂的影响[J]. 中国腐蚀与防护学报, 2010, 30: 145
|
8 |
Lv Z A, Ni H W, Zhang H, et al. Evolution of MnS inclusions in Ti-bearing X80 pipeline steel[J]. J. Iron Steel Res. Int., 2017, 24: 654
doi: 10.1016/S1006-706X(17)30098-5
|
9 |
Ehara Y, Yokoyama S, Kawakami M. Control of formation of spinel inclusion in type 304 stainless steel by slag composition[J]. Tetsu Hagané, 2007, 93: 475
|
9 |
江原 靖弘, 横山 誠二, 川上 正博. SUS304ステンレス鋼中スピネル介在物生成のスラグ組成による制御[J]. 鉄と 鋼, 2007, 93: 475
|
10 |
Park J S, Park J H. Effect of slag composition on the concentration of Al2O3 in the inclusions in Si-Mn-killed steel[J]. Metall. Mater. Trans., 2014, 45B: 953
|
11 |
Miao K Y, Haas A, Sharma M, et al. In situ observation of calcium aluminate inclusions dissolution into steelmaking slag[J]. Metall. Mater. Trans., 2018, 49: 1612
doi: 10.1007/s11663-018-1303-y
|
12 |
Yan P C, Huang S G, Pandelaers L, et al. Effect of the CaO-Al2O3-based top slag on the cleanliness of stainless steel during secondary metallurgy[J]. Metall. Mater. Trans., 2013, 44: 1105
doi: 10.1007/s11663-013-9898-5
|
13 |
Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part I. Background, experimental techniques and analysis methods[J]. Metall. Mater. Trans., 2011, 42B: 711
|
14 |
Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part II. Results and discussion[J]. Metall. Mater. Trans., 2011, 42B: 720
|
15 |
Zhang Y X, Zhang L F, Chu Y P, et al. Transformation of inclusions in a complicated-deoxidized heavy rail steels during heating[J]. Steel Res. Int., 2020, 91: 2000120
doi: 10.1002/srin.v91.9
|
16 |
Cheng G, Li W F, Zhang X G, et al. Transformation of inclusions in solid GCr15 bearing steels during heat treatment[J]. Metals, 2019, 9: 642
doi: 10.3390/met9060642
|
17 |
Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in type 304 stainless steels during heat treatment[J]. Metall. Mater. Trans., 2017, 48B: 2281
|
18 |
Takahashi I, Sakae T, Yoshida T, et al. Changes of the nonmetallic inclusion by heating (Study on the nonmetallic inclusion in 18-8 stainless steel-II)[J]. Tetsu Hagané, 1967, 53: 350
|
18 |
中川 義隆, 百瀬 昭次, 高橋 市朗 等. 造塊·非金属介在物[J]. 鉄と 鋼, 1967, 53: 350
|
19 |
Yang W, Guo C B, Li C, et al. Transformation of inclusions in pipeline steels during solidification and cooling[J]. Metall. Mater. Trans., 2017, 48B: 2267
|
20 |
Zhang X L, Yang S F, Li J S, et al. Effect of heat treatment on oxide inclusion in Si-killed 304 stainless steel[J]. Iron Steel, 2018, 53(5): 32
|
20 |
张雪良, 杨树峰, 李京社 等. 热处理对硅脱氧304不锈钢内氧化物夹杂的影响[J]. 钢铁, 2018, 53(5): 32
|
21 |
Wang Y, Yang W, Zhang L F. Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel[J]. Steel Res. Int., 2019, 90: 1900027
doi: 10.1002/srin.v90.7
|
22 |
Chu Y P, Li W F, Ren Y, et al. Transformation of inclusions in linepipe steels during heat treatment[J]. Metall. Mater. Trans., 2019, 50: 2047
doi: 10.1007/s11663-019-01593-1
|
23 |
Ren Q, Zhang Y X, Ren Y, et al. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab[J]. J. Mater. Sci. Technol., 2020, 61: 147
doi: 10.1016/j.jmst.2020.05.035
|
24 |
Ren C Y, Zhang L F, Ren Y. A review on dissolution behavior of non-metallic inclusions in-situ observed using high temperature confocal scanning laser microscope[J]. J. Iron Steel Res., 2021, 33: 670
|
24 |
任昶宇, 张立峰, 任 英. 高温共聚焦显微镜原位观察非金属夹杂物溶解行为研究进展[J]. 钢铁研究学报, 2021, 33: 670
|
25 |
Ren Q, Zhang Y X, Zhang L F, et al. Prediction on the spatial distribution of the composition of inclusions in a heavy rail steel continuous casting bloom[J]. J. Mater. Res. Technol., 2020, 9: 5648
doi: 10.1016/j.jmrt.2020.03.090
|
26 |
Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification[J]. Metall. Mater. Trans., 1986, 17: 845
|
27 |
Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels[J]. Metall. Mater. Trans., 2001, 32A: 1755
|
28 |
Wang J J, Zhang L F, Zhang Y X, et al. Prediction of spatial composition distribution of inclusions in the continuous casting bloom of a bearing steel under unsteady casting[J]. ISIJ Int., 2021, 61: 824
doi: 10.2355/isijinternational.ISIJINT-2020-472
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|