|
|
镍基铸造高温合金等轴晶凝固成形技术的研究和进展 |
张军1( ),介子奇1,2,黄太文1,杨文超1,刘林1,傅恒志1 |
1. 西北工业大学凝固技术国家重点实验室 西安 710072 2. 西安工业大学材料与化工学院 西安 710021 |
|
Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys |
ZHANG Jun1( ),JIE Ziqi1,2,HUANG Taiwen1,YANG Wenchao1,LIU Lin1,FU Hengzhi1 |
1. State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China 2. School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China |
引用本文:
张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
Jun ZHANG,
Ziqi JIE,
Taiwen HUANG,
Wenchao YANG,
Lin LIU,
Hengzhi FU.
Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. Acta Metall Sin, 2019, 55(9): 1145-1159.
[1] | ChenW H, ChenR Z. Development of aerospace investment casting technique [J]. J. Aeronaut. Mater., 1992, 12(1): 57 | [1] | 陈婉华, 陈荣章. 宇航熔模铸造技术的发展 [J]. 航空材料学报, 1992, 12(1): 57) | [2] | XiongY C. Basic research of precision forming technology of aviation complex components [J]. Aeronaut. Manuf. Technol., 2010, (2): 54 | [2] | 熊艳才. 航空复杂构件精确成形技术基础研究 [J]. 航空制造技术, 2010, (2): 54) | [3] | YuanW M, ChenR Z. Precision casting technology for large thin wall Superalloy integral castings [J]. Aeronaut. Manuf. Eng., 1997, (1): 15 | [3] | 袁文明, 陈荣章. 高温合金大型薄壁整体铸件精铸技术的发展 [J]. 航空制造工程, 1997, (1): 15) | [4] | GuoJ T. Review on whrought superalloy and equiaxed crystal cast superalloy materials and their application basic theories [J]. Acta Metall. Sin., 2010, 46: 1303 | [4] | 郭建亭. 变形高温合金和等轴晶铸造高温合金材料与应用基础理论研究 [J]. 金属学报, 2010, 46: 1303 | [5] | China Aviation Materials Manual Editorial Committee. China Aeronautical Materials Handbook [M]. 2nd Ed., Beijing: Standards Press of China, 2001: 689 | [5] | (中国航空材料手册编委会. 中国航空材料手册 [M].第2版, 北京: 中国标准出版社, 2001: 689) | [6] | MotturaA, WarnkenN, MillerM K, , et al. Atom probe tomography analysis of the distribution of rhenium in nickel alloys [J]. Acta Mater., 2010, 58: 931 | [7] | DingQ Q, LiS Z, ChenL Q, , et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137 | [8] | TangY L, HuangM, XiongJ C, , et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336 | [9] | ZhangJ, LouL H. Basic Research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637 | [9] | 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637 | [10] | CowlesB, BackmanD, DuttonR. Verification and validation of ICME methods and models for aerospace applications [J]. Integr. Mater. Manuf. Innovat., 2012, 1: 2 | [11] | StewartC A, RheinR K, SuzukiA, , et al. Oxide scale formation in novel γ-γ' cobalt-based alloys [A]. Proceedings of the 13th International Symposium on Superalloys [C]. Warrendale, PA: TMS, 2016: 991 | [12] | KirklinS, SaalJ E, HegdeV I, , et al. High-throughput computational search for strengthening precipitates in alloys [J]. Acta Mater., 2016, 102: 125 | [13] | KennedyR L. Allvac 718plus, superalloy for the next forty years [A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Warrendale, PA: TMS, 2005: 1 | [14] | JieZ Q. Influence of trace element and melt treatment on microstructure and property of K4169 superalloy [D]. Xi'an: Northwestern Polytechnical University, 2018 | [14] | 介子奇. 微量元素及熔体处理对K4169高温合金组织和性能的影响 [D]. 西安: 西北工业大学, 2018 | [15] | NiuJ P, YangK N, SunX F, , et al. Investigation on deoxidation during VIM refining Ni-base superalloy by using CaO crucible [J]. Acta Metall. Sin., 2002, 38: 303 | [15] | 牛建平, 杨克努, 孙晓峰等. 用CaO坩埚真空感应熔炼镍基高温合金脱氧研究 [J]. 金属学报, 2002, 38: 303 | [16] | ChenF W, HuangX B, WangY, , et al. Investigation on foam ceramic filter to remove inclusions in revert superalloy [J]. Mater. Lett., 1998, 34: 372 | [17] | GuiZ L. Development of nickel-based superalloy technology [J]. Aeronaut. Manuf. Eng., 1995, (4): 12 | [17] | 桂忠楼. 镍基高温合金BTOP工艺的发展 [J]. 航空制造工程, 1995, (4): 12) | [18] | NiuJ P. Preparation Technology of Pure Steel and Superalloy [M]. Beijing: Metallurgical Industry Press, 2009: 35 | [18] | 牛建平. 纯净钢及高温合金制备技术 [M]. 北京: 冶金工业出版社, 2009: 35) | [19] | ZhangK R. Homogeneous microstructure of bulk K4169 superalloy obtained by stable undercooling [D]. Xi'an: Northwestern Polytechnical University, 2015 | [19] | 张可人. K4169高温合金大体积深过冷凝固与力学性能研究 [D]. 西安: 西北工业大学, 2015 | [20] | HosamaniL. Method of casting a metal article [P]. Europe Pat, 0711215B1, 2002 | [21] | DongA P, YanN S, ZhangJ, , et al. Investigation of thin-walled IN718 castings by counter-gravity investment casting [A]. Advances in the Science and Engineering of Casting Solidification [C]. New York: Springer, 2015: 399 | [22] | DebroyT, WeiH L, ZubackJ S, , et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112 | [23] | TyagunovA G, BaryshevE E, KostinaT K, , et al. Thermal stability of the structure of a high-temperature nickel alloy fabricated by two different technologies [J]. Met. Sci. Heat Treat., 1999, 41: 538 | [24] | KolotukhinE V, TjagunovG V. Crystallization of superalloys with various contents of carbon [J]. J. Mater. Proc. Technol., 1995, 53: 219 | [25] | BalakinY A, GladkovM I. Thermodynamic analysis of high-temperature treatment of metallic melts: Part I [J]. Russ. Metall., 2008, 2008: 611 | [26] | BalakinY A, GladkovM I. Thermodynamic analysis of high-temperature treatment of metallic melts: Part II [J]. Russ. Metall., 2008, 2008: 730 | [27] | YinF S, SunX F, GuanH R, , et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963 [J]. J. Alloys Compd., 2004, 364: 225 | [28] | WangZ, LiJ G, ZhaoN R, , et al. Effect of the melt treatment temperature on the melt structure and microstructure of a nickel based single crystal superalloy [J]. Acta Metall. Sin., 2002, 38: 920 | [28] | 王 震, 李金国, 赵乃仁等. 熔体处理温度对镍基单晶高温合金熔体结构和凝固组织的影响 [J]. 金属学报, 2002, 38: 920 | [29] | Calvo-DahlborgM, PopelP S, KramerM J, , et al. Superheat-dependent microstructure of molten Al-Si alloys of different compositions studied by small angle neutron scattering [J]. J. Alloys Compd., 2013, 550: 9 | [30] | GaoZ T, HuR, WangJ, , et al. Heredity of medium-range order structure from melts to the microstructure of Ni-Cr-W superalloy [J]. Appl. Phys., 2015, 120A: 183 | [31] | ZuF Q, ZhuZ G, GuoL J, , et al. Observation of an anomalous discontinuous liquid-structure change with temperature [J]. Phys. Rev. Lett., 2002, 89: 125505 | [32] | MaJ B, ChenS H, DaiY B, , et al. The local structure of molten Ni1-xAlx: An ab initio molecular dynamics study [J]. J. Non-Cryst. Solids, 2015, 425: 11 | [33] | KurakovaN V, MolokanovV V, SterkhovaI V, , et al. Effect of the state of a melt on the glass-forming ability, structure, and properties of a melt-quenched bulk amorphous nickel-based alloy [J]. Russ. Metall., 2007, 2007: 519 | [34] | BodakinN E, BaumB A, KostinaT K. Effect of melting conditions on the thermal expansion coefficient of alloy 36N [J]. Met. Sci. Heat Treat., 1979, 21: 323 | [35] | BaryshevE E, TyagunovG V, BaumB A, , et al. The influence of melt state on atomization process and quality of powders on iron and nickel base [J]. J. Phys., 2008, 98: 072017 | [36] | StepanovaN N, RodionovD P, TurkhanY E, , et al. Phase stability of nickel-base superalloys solidified after a high-temperature treatment of the melt [J]. Phys. Met. Metall., 2003, 95: 602 | [37] | WangH F, SuH J, ZhangJ, , et al. Effect of melt thermal history on solidification behavior and microstructural characteristics of a third-generation Ni-based single crystal superalloy [J]. J. Alloys Compd., 2016, 688: 430 | [38] | JieZ Q, ZhangJ, HuangT W, , et al. The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy [J]. J. Alloys Compd., 2017, 706: 76 | [39] | ZhangJ, LiB, ZhouM M, , et al. Microstructure and stress rupture property of Ni-based monocrystal superalloy with melt superheating treatment [J]. J. Alloys Compd., 2009, 484: 753 | [40] | YinF S, SunX F, LiJ G, , et al. Effects of melt treatment on the cast structure of M963 superalloy [J]. Scr. Mater., 2003, 48: 425 | [41] | YinF S, SunX F, LiY B, , et al. Effect of melt superheating treatment on the microstructure and high temperature stress rupture properties of M963 superalloy [J]. Acta Metall. Sin., 2003, 39: 75 | [41] | 殷凤仕, 孙晓峰, 李耀彪等. 熔体过热处理对M963合金组织和高温持久性能的影响 [J]. 金属学报, 2003, 39: 75 | [42] | PeiZ Y, LiJ T, ZhaoM H, , et al. Influence of melt super-heating treatment on grain and carbides of K465 alloy [J]. J. Iron Steel Res., 2008, 20(2): 49 | [42] | 裴忠冶, 李俊涛, 赵明汉等. 熔体过热处理对K465合金晶粒和碳化物的影响 [J]. 钢铁研究学报, 2008, 20(2): 49) | [43] | LiuL, ZhenB L, BanerjiA, , et al. Effect of melt homogenization temperature on the cast structures of IN 738 LC superalloy [J]. Scr. Metall. Mater., 1994, 30: 593 | [44] | WangC S, ZhangJ, LiuL, , et al. Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy [J]. J. Mater. Sci. Technol., 2011, 27: 668 | [45] | LiuL. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273 | [45] | 刘 林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273 | [46] | ShiC X, ZhongZ Y. Fifty Years of Superalloy in China [M]. Beijing: Metallurgical Industry Press, 2006: 72 | [46] | 师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 72) | [47] | BrinegarJ R, NorrisL F, RozenbergL. Microcast-X fine grain casting—A progress report [A].Superalloy 1984 [C]. Warrendale, PA: TMS, 1984: 23 | [48] | WouldsM, BensonH. Development of a conventional fine grain casting process [A].Superalloy 1984 [C]. Warrendale, PA: TMS, 1984: 3 | [49] | WeiC N, BorH Y, MaC Y, , et al. A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties [J]. Mater. Chem. Phys., 2003, 80: 89 | [50] | MaY, SunJ H, XieX S, , et al. An investigation on fine-grain formation and structural character in cast IN718 superalloy [J]. J. Mater. Proc. Tehnol., 2003, 137: 35 | [51] | FerroP D, ShendyeS B. Thermal analysis from thermally-controlled solidification (TCS) trials on large investment castings [A].Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 531 | [52] | ZhengL, ZhangG Q, XiaoC B, , et al. The interdendritic-melt solidification control (IMSC) and its effects on the porosity and phase change of a Ni-based superalloy [J]. Scr. Mater., 2014, 74: 84 | [53] | BrinegarJ R, ChamberlainK R, VresicsJ J, , et al. A method of forming a fine-grained equiaxed casting [P]. US Pat, 4832112, 1989 | [54] | LiX, GagnoudA, FautrelleY, , et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field [J]. Acta Mater., 2012, 60: 3321 | [55] | FengX H, YangY S. Numerical modeling of crystal growth of a nickel-based superalloy with applied direct current [J]. J. Cryst. Growth, 2011, 334: 170 | [56] | FlemingsM C. Behavior of metal alloys in the semisolid state [J]. Metall. Trans., 1991, 22A: 957. | [57] | MaX P, LiY J, YangY S. Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417 [J]. J. Mater. Res., 2009, 24: 2670 | [58] | JiaP, WangE G, LuH, , et al. Effect of electromagnetic field on microstructure and mechanical property for Inconel 625 superalloy [J]. Acta Metall. Sin., 2013, 49: 1573 | [58] | 贾 鹏, 王恩刚, 鲁 辉等. 电磁场对Inconel 625合金凝固组织及力学性能的影响 [J]. 金属学报, 2013, 49: 1573 | [59] | ZhaoJ C, YanP, PengY F, , et al. An advanced precision cast technology for equiaxed fine grain superalloys casting [J]. Aerosp. Manuf. Technol., 2013, (6): 1 | [59] | 赵京晨, 燕 平, 彭艳锋等. 高温合金细晶铸造新技术 [J]. 航天制造技术, 2013, (6): 1) | [60] | JinW Z, BaiF D, LiT J, , et al. Grain refinement of superalloy IN100 under the action of rotary magnetic fields and inoculants [J]. Mater. Lett., 2008, 62: 1585 | [61] | LiuL, HuangT W, XiongY H, , et al. Grain refinement of superalloy K4169 by addition of refiners: Cast structure and refinement mechanisms [J]. Mater. Sci. Eng., 2005, A394: 1 | [62] | ZhaoH T, ShiC X. Investigation of CoO inoculant for surface grain refinement of cast nickel-base superalloy blades [J]. Acta Metall. Sin., 1981, 17: 118 | [62] | 赵惠田, 师昌绪. CoO孕育剂促进铸造镍基高温合金晶粒细化的研究 [J]. 金属学报, 1981, 17: 118 | [63] | XiongY H, WeiX Y, DuJ, , et al. Grain refinement of superalloy IN718C by the addition of inoculants [J]. Metall. Mater. Trans., 2004, 35A: 2111 | [64] | LiX H, CaoL M, ZhangY, , et al. Effect of refiner TiN on microstructure of K4169 superalloy [J]. Foundry, 2010, 59: 1290 | [64] | 李相辉, 曹腊梅, 张 勇等. TiN细化剂对K4169高温合金组织的影响 [J]. 铸造, 2010, 59: 1290 | [65] | BenerjiA, ReifW. Present situation of grain-refinement and its effect on product quality [J]. Metall, 1987, 41: 393 | [66] | JiangW G, YangM C, LouL H, , et al. Preparation of Ni-W-10Y2O3 refiner and refinement mechanism in a superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2011, 24: 365 | [67] | JieZ Q, ZhangJ, HuangT W, , et al. Effects of grain refinement on cast structure and tensile properties of superalloy K4169 at high pouring temperature [J]. China Foundry, 2016, 13: 101 | [68] | JieZ Q, ZhangJ, HuangT W, , et al. Enhanced grain refinement and porosity control of the polycrystalline superalloy by a modified thermally-controlled solidification [J]. Adv. Eng. Mater., 2016, 18: 1785 | [69] | YangW C, QuP F, LiuL, , et al. Nucleation crystallography of Ni grains on CrFeNb inoculants investigated by Edge‐to‐Edge matching model in an IN718 superalloy [J]. Adv. Eng. Mater., 2018, 20: 1700568 | [70] | GongL, ChenB, DuZ H, , et al. Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34: 541 | [71] | WuY S, ZhangM C, XieX S. The design and research of a new low cobalt-molybdenum niobium-containing Ni-base superalloy for 700 ℃ advanced ultra-supercritical power plants [J]. Proced. Eng., 2015, 130: 617 | [72] | RazumovskiyV I, LozovoiA Y, RazumovskiiI M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion [J]. Acta Mater., 2015, 82: 369 | [73] | ChandranM, SondhiS. First-principle calculation of APB energy in Ni-based binary and ternary alloys [J]. Modell. Simul. Mater. Sci. Eng., 2011, 19: 025008 | [74] | ReedR C, TaoT, WarnkenN. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5893 | [75] | ConduitB D, JonesN G, StoneH J, , et al. Design of a nickel-base superalloy using a neural network [J]. Mater. Des., 2017, 131: 358 | [76] | BolcavageA, BrownP D, CedozR, , et al. Integrated computational materials engineering from a gas turbine engine perspective [J]. Integr. Mater. Manuf. Innovat., 2014, 3: 13 | [77] | SeoS M, KimI S, JoC Y, , et al. Grain structure prediction of Ni-base superalloy castings using the cellular automaton-finite element method [J]. Mater. Sci. Eng., 2007, A449-451: 713 | [78] | WangN, LiuL, GaoS F, , et al. Simulation of grain selection during single crystal casting of a Ni-base superalloy [J]. J. Alloys Compd., 2014, 586: 220 | [79] | ReyesL A, PáramoP, ZamarripaA S, , et al. Grain size modeling of a Ni-base superalloy using cellular automata algorithm [J]. Mater. Des., 2015, 83: 301 | [80] | DongH B, YangX L, LeeP D, , et al. Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys [J]. J. Mater. Sci., 2004, 39: 7207 | [81] | AlabortF, BarbaD, SulzerS, , et al. Grain boundary properties of a nickel-based superalloy: Characterisation and modelling [J]. Acta Mater., 2018, 151: 377 | [82] | WangW, LeeP D, McLeanM. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971 | [83] | NieP, OjoO A, LiZ G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy [J]. Acta Mater., 2014, 77: 85 | [84] | ZhouN, LvD C, ZhangH L, , et al. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation [J]. Acta Mater., 2014, 65: 270 | [85] | KundinJ, MushongeraL, GoehlerT, , et al. Phase-field modeling of the γ′-coarsening behavior in Ni-based superalloys [J]. Acta Mater., 2012, 60: 3758 | [86] | RettigR, SingerR F. Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys [J]. Acta Mater., 2011, 59: 317 | [87] | ZhuT, WangC Y. Misfit dislocation networks in the γ/γ' phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations [J]. Phys. Rev., 2005, 72B: 014111 | [88] | WarnkenN, MaD, DrevermannA, , et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys [J]. Acta Mater., 2009, 57: 5862 | [89] | YangM, ZhangJ, WeiH, , et al. Influence of cooling rate on the formation of bimodal microstructures in nickel-base superalloys during continuous two-step aging [J]. Comput. Mater. Sci., 2018, 149: 14 | [90] | TsukadaY, MurataY, KoyamaT, , et al. Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories [J]. Acta Mater., 2011, 59: 6378 | [91] | YangM, ZhangJ, WeiH, , et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16 | [92] | LiuB C, JingT. Simulation and Quality Control of Foundry Engineering [M]. Beijing: China Machine Press, 2001: 15 | [92] | 柳百成, 荆 涛. 铸造工程的模拟仿真与质量控制 [M]. 北京: 机械工业出版社, 2001: 15) | [93] | QiX, ZhangY, GuH P, , et al. Numerical simulation and process optimization of thermally controlled solidification of K4169 superalloy engine case [J]. Foundry, 2015, 64: 851 | [93] | 戚 翔, 张 勇, 谷怀鹏等. K4169高温合金机匣热控凝固工艺的数值模拟及优化 [J]. 铸造, 2015, 64: 851 | [94] | DuQ, LiD Z, HuZ Y. Simulation coupling heat transfer to fluid flow during mold filling [J]. Foundry, 2000, 49: 336 | [94] | 杜 强, 李殿中, 胡志勇. 铸件充型过程中的流动与传热耦合模拟 [J]. 铸造, 2000, 49: 336 | [95] | ShendyeS, KingB, McquayP. Mechanical properties of counter-gravity cast IN718[A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Narrendale, PA: TMS, 2005, 124: 133 | [96] | MishraS, RanjanaR. Reverse solidification path methodology for dewaxing ceramic shells in investment casting process [J]. Mater. Manuf. Proc., 2010, 25: 1385 | [97] | SunB D, WangJ, ShuD, , et al. Precision Forming Technology of Large Superalloy Castings for Aircraft [M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 10 | [97] | 孙宝德, 王 俊, 疏 达等. 航空发动机高温合金大型铸件精密成型技术 [M]. 上海: 上海交通大学出版社, 2016: 10) | [98] | HebsurM G. Processing of IN-718 lattice block castings [A]. Processing and Properties of Lightweight Cellular Metals and Structures [C]. Warrendale, PA: The Minerals, Metals & Materials Society, 2002: 85 | [99] | ChengY C. Counter-gravity casting simulation of superalloy casting with large thin-walled structure characteristc [D]. Xi'an: Northwestern Polytechnical University, 2014 | [99] | 程运超. 大面积薄壁结构特征高温合金铸件反重力铸造过程模拟 [D]. 西安: 西北工业大学, 2014 | [100] | HerzogD, SeydaV, WyciskE, , et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371 | [101] | MurrL E, MartinezE, AmatoK N, , et al. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science [J]. J. Mater. Res. Technol., 2012, 1: 42 | [102] | K?rnerC. Additive manufacturing of metallic components by selective electron beam melting—A review [J]. Int. Mater. Rev., 2016, 61: 361 | [103] | GuoN N, LeuM C. Additive manufacturing: Technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215 | [104] | HoebelM, FehrmannB, SchnellA. Robot guided laser repair of single crystal turbine blades [A]. Power-Gen Europe [C]. Tulsa, Oklahoma: PennWell Publishing Corporation, 2003: 6 | [105] | GrunewaldS J. GE is using 3D printing and their new smart factory to revolutionize large-scale manufacturing. | [106] | SuiS, ChenJ, MaL, , et al. Microstructures and stress rupture properties of pulse laser repaired Inconel 718 superalloy after different heat treatments [J]. J. Alloys Compd., 2019, 770: 125 | [107] | ZhangY C, YangL, DaiJ, , et al. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition [J]. Opt. Laser Technol., 2016, 80: 220 | [108] | ZhouY, WangY, FangY, , et al. Wear resistance of Ti5Si3/NiTi biphase intermetallic compound alloy by laser melting deposition [J]. Rare Met. Mater. Eng., 2010, 39: 1411 | [109] | AmatoK N, GaytanS M, MurrL E, , et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229 | [110] | KunzeK, EtterT, Gr?sslinJ, , et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) [J]. Mater. Sci. Eng., 2015, A620: 213 | [111] | WangF, WuX H, ClarkD. On direct laser deposited hastelloy X: Dimension, surface finish, microstructure and mechanical properties [J]. Mater. Sci. Technol., 2011, 27: 344 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|