Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 301-313    DOI: 10.11900/0412.1961.2017.00414
  本期目录 | 过刊浏览 |
W中H行为的计算模拟研究
周洪波(), 李宇浩, 吕广宏
北京航空航天大学物理科学与核能工程学院 北京 100191
Modeling and Simulation of Hydrogen Behavior in Tungsten
Hongbo ZHOU(), Yuhao LI, Guanghong LU
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
引用本文:

周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究[J]. 金属学报, 2018, 54(2): 301-313.
Hongbo ZHOU, Yuhao LI, Guanghong LU. Modeling and Simulation of Hydrogen Behavior in Tungsten[J]. Acta Metall Sin, 2018, 54(2): 301-313.

全文: PDF(4254 KB)   HTML
摘要: 

采用基于密度泛函理论的第一原理计算方法和基于Newton力学的分子动力学方法,对H在W中的溶解、扩散、聚集、形核等行为及H对W性能影响进行系统研究,发现了H在W中占位和聚集的“最佳电子密度”规则,揭示了W中H泡形核的空位捕获机制;发现了H聚集诱发的各向异性应变可降低H在W中的溶解能,从而产生H溶解增强效应,藉此提出H泡生长的应变级联机制;提出通过惰性气体/合金化元素掺杂改变W中缺陷处的电子密度,有效阻止H2分子在缺陷处的形成和聚集,从而抑制W中H泡形成的方法。本文对这一系列的工作进行了综述。这些研究成果将为未来聚变堆用W-PFM的设计、制备和应用提供重要参考。

关键词 W,H,面对等离子体材料聚变能计算模拟    
Abstract

Based on national strategic needs for fusion energy, our group have investigated the behavior of H isotopes including dissolution, diffusion, accumulation and bubble formation in W using a first-principles method in combination with molecular dynamic method. It is found that the dissolution and nucleation of H in defects follow an "optimal charge density" rule, and a vacancy trapping mechanism for H bubble formation in W has been revealed. An anisotropic strain enhanced effect of H solubility due to H accumulation in W has been found, and a cascading effect of H bubble growth has been proposed. Noble gases/alloying elements doping in W has been proposed to suppress H bubble formation, because these dopants can change the distribution of charge density in defects and block the formation and nucleation of H2 molecule. These works are reviewed in this paper. Our calculations will provide a good reference for the design, preparation and application of W-PFM under a fusion environment.

Key wordsW,H,plasma facing material    nuclear fusion energy    modelling and simulation
收稿日期: 2017-09-29     
基金资助:国家自然科学基金面上项目No.11675011和国家杰出青年基金项目No.51325103
作者简介:

作者简介 周洪波,男,1982年生,副教授

图1  W中H可能的占位位置:八面体间隙(OIS)、四面体间隙(TIS)和替代位(SS)[29]
Energy Our calculation[21] Previous study[30]
TIS OIS TIS OIS
ZPE 0.263 0.256 0.253 -
Solution energy (with ZPE) 1.00 1.38 1.00 -
Solution energy (without ZPE) 0.88 1.26 0.89 1.29
表1  单个H原子在W中TIS和OIS处的零点能(ZPE)和溶解能[21,30]
图2  多个H原子在W体内的最稳定构型及对应的原子间距[33]
图3  W中H在TIS和OIS处溶解能随应变的变化[37]
图4  W中H泡生长的应变级联机制示意图[16]
图5  本征W沿[001]、[110]和[111]方向上的理论拉伸强度[38]及H对W [001]方向理论拉伸强度的影响[39]
图6  W中单空位对H捕获能随H原子个数的变化[41,42]
图7  W中单空位捕获不同个数H原子时的构型以及最佳电子密度面[41]
图8  H在W中的扩散路径及对应的扩散能垒[41]
图9  H在W晶界中占位聚集的最佳电子密度面随H原子个数的变化[49]
图10  H分别以“simultaneous way”和“sequential way”进入He-V复合体时捕获能随H原子数目的变化关系和W中He-V-H12复合物原子结构图[21]
[1] Dresselhaus M S, Thomas I L.Alternative energy technologies[J]. Nature, 2001, 414: 332
[2] Chu S, Majumdar A.Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294
[3] Ongena J, Van Oost G.Energy for future centuries: Prospects for fusion power as a future energy source[J]. Fusion Sci. Technol., 2010, 57: 3
[4] Lehnert B.Half a century of fusion research towards ITER[J]. Phys. Scr., 2012, 87: 018201
[5] Barabash V, The ITER International Team, Peacock A, et al. Materials challenges for ITER—Current status and future activities[J]. J. Nucl. Mater., 2007, 367: 21
[6] Zinkle S J, Busby J T.Structural materials for fission & fusion energy[J]. Mater. Today, 2009, 12: 12
[7] Zinkle S J, Snead L L.Designing radiation resistance in materials for fusion energy[J]. Annu. Rev. Mater. Res., 2014, 44: 241
[8] Knaster J, Moeslang A, Muroga T.Materials research for fusion[J]. Nat. Phys., 2016, 12: 424
[9] Linsmeier C, Rieth M, Aktaa J, et al.Development of advanced high heat flux and plasma-facing materials[J]. Nucl. Fusion, 2017, 57: 092007
[10] Ueda Y, Schmid K, Balden M, et al.Baseline high heat flux and plasma facing materials for fusion[J]. Nucl. Fusion, 2017, 57: 092006
[11] Buzi L, De Temmerman G, Unterberg B, et al.Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention[J]. J. Nucl. Mater., 2015, 463: 320
[12] Linsmeier Ch, Unterberg B, Coenen J W, et al.Material testing facilities and programs for plasma-facing component testing[J]. Nucl. Fusion, 2017, 57: 092012
[13] Zibrov M, Balden M, Morgan T W, et al.Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences[J]. Nucl. Fusion, 2017, 57: 046004
[14] Jia Y Z, Liu W, Xu B, et al.Subsurface deuterium bubble formation in W due to low-energy high flux deuterium plasma exposure[J]. Nucl. Fusion, 2017, 57: 034003
[15] Dudarev S L.Density functional theory models for radiation damage[J]. Annu. Rev. Mater. Res., 2013, 43: 35
[16] Lu G H, Zhou H B, Becquart C S.A review of modelling and simulation of hydrogen behaviour in tungsten at different scales[J]. Nucl. Fusion, 2014, 54: 086001
[17] Kresse G, Hafner J.Ab initio molecular dynamics for liquid metals[J]. Phys. Rev., 1993, 47B: 558
[18] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[19] Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244
[20] Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[21] Zhou H B, Liu Y L, Jin S, et al.Towards suppressing H blistering by investigating the physical origin of the H-He interaction in W[J]. Nucl. Fusion, 2010, 50: 115010
[22] Counts W A, Wolverton C, Gibala R.First-principles energetics of hydrogen traps in α-Fe: Point defects[J]. Acta Mater., 2010, 58: 4730
[23] Fernandez N, Ferro Y, Kato D.Hydrogen diffusion and vacancies formation in tungsten: Density functional theory calculations and statistical models[J]. Acta Mater., 2015, 94: 307
[24] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1
[25] Li X C, Shu X, Liu Y N, et al.Modified analytical interatomic potential for a W-H system with defects[J]. J. Nucl. Mater., 2011, 408: 12
[26] Li X C, Shu X L, Liu Y N, et al.Analytical W-He and H-He interatomic potentials for a W-H-He system[J]. J. Nucl. Mater., 2012, 426: 31
[27] Wang L F, Shu X, Lu G H, et al.Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten[J]. J. Phys.: Condens. Matter, 2017, 29: 435401
[28] Liu Y L, Zhang Y, Luo G N, et al. Structure, stability and diffusion of hydrogen in tungsten: A first-principles study [J]. J. Nucl. Mater., 2009, 390-391: 1032
[29] Li Y H, Zhou H B, Lu G H.Towards understanding the strong trapping effects of noble gas elements on hydrogen in tungsten[J]. Int. J. Hydrogen Energy, 2017, 42: 6902
[30] Kong X S, Wang S, Wu X, et al.First-principles calculations of hydrogen solution and diffusion in tungsten: Temperature and defect-trapping effects[J]. Acta Mater., 2015, 84: 426
[31] Liu Y N, Wu T F, Yu Y, et al.Hydrogen diffusion in tungsten: A molecular dynamics study[J]. J. Nucl. Mater., 2014, 455: 676
[32] Frauenfelder R.Solution and diffusion of hydrogen in tungsten[J]. J. Vac. Sci. Technol., 1969, 6: 388
[33] Qin S Y, Jin S, Sun L, et al.Hydrogen assisted vacancy formation in tungsten: A first-principles investigation[J]. J. Nucl. Mater., 2015, 465: 135
[34] Van A V, Filius H A, De Vries J, et al. Hydrogen exchange with voids in tungsten observed with TDS and PA [J]. J. Nucl. Mater., 1988, 155-157: 1113
[35] Shu W, Wakai E, Yamanishi T.Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma[J]. Nucl. Fusion, 2007, 47: 201
[36] Li W Y, Zhang Y, Zhou H B, et al.Stress effects on stability and diffusion of H in W: A first-principles study[J]. Nucl. Instrum. Meth. Phys. Res. Sec., 2011, 269B: 1731
[37] Zhou H B, Jin S, Zhang Y, et al.Anisotropic strain enhanced hydrogen solubility in bcc metals: The independence on the sign of strain[J]. Phys. Rev. Lett., 2012, 109: 135502
[38] Liu Y L, Zhou H B, Zhang Y, et al.The ideal tensile strength and deformation behavior of a tungsten single crystal[J]. Nucl. Instrum. Methods Phys. Res. Sec., 2009, 267B: 3282
[39] Liu Y L, Zhou H B, Jin S, et al.Effects of H on electronic structure and ideal tensile strength of W: A First-principles calculation[J]. Chin. Phys. Lett., 2010, 27: 127101
[40] Nielsen O H, Martin R M.Quantum-mechanical theory of stress and force[J]. Phys. Rev., 1985, 32B: 3780
[41] Liu Y L, Zhang Y, Zhou H B, et al.Vacancy trapping mechanism for hydrogen bubble formation in metal[J]. Phys. Rev., 2009, 79B: 172103
[42] Sun L, Jin S, Li X C, et al.Hydrogen behaviors in molybdenum and tungsten and a generic vacancy trapping mechanism for H bubble formation[J]. J. Nucl. Mater., 2013, 434: 395
[43] Sun L, Jin S, Zhou H B, et al.Critical concentration for hydrogen bubble formation in metals[J]. J. Phys.: Condens. Matter, 2014, 26: 395402
[44] Liu Y N, Ahlgren T, Bukonte L, et al.Mechanism of vacancy formation induced by hydrogen in tungsten[J]. AIP Adv., 2013, 3: 122111
[45] Qin S Y, Jin S, Niu L L, et al.The effect of hydrogen on the recombination of Frenkel pair in tungsten: A theoretical insight[J]. Sci. China Phys. Mech. Astron., 2017, 60: 067021
[46] Nguyen-Manh D, Horsfield A P, Dudarev S L.Self-interstitial atom defects in bcc transition metals: Group-specific trends[J]. Phys. Rev., 2006, 73B: 020101
[47] Haasz A A, Poon M, Davis J W. The effect of ion damage on deuterium trapping in tungsten [J]. J. Nucl. Mater., 1999, 266-269: 520
[48] González C, Panizo-Laiz M, Gordillo N, et al.H trapping and mobility in nanostructured tungsten grain boundaries: A combined experimental and theoretical approach[J]. Nucl. Fusion, 2015, 55: 113009
[49] Zhou H B, Liu Y L, Jin S, et al.Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism[J]. Nucl. Fusion, 2010, 50: 025016
[50] Zhou H B, Jin S, Zhang Y, et al.Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 240
[51] Zhou H B, Jin S, Zhang Y, et al.First-principles study of carbon effects in a tungsten grain boundary: Site preference, segregation and strengthening[J]. Sci. China Phys. Mech. Astron., 2011, 54: 2164
[52] Yu Y, Shu X L, Liu Y N, et al.Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary[J]. J. Nucl. Mater., 2014, 455: 91
[53] Yu Y, Shu X L, Liu Y N, et al.Effect of hydrogen on grain boundary migration in tungsten[J]. Sci. China Phys. Mech. Astron., 2015, 58: 1
[54] Liu Y L, Gao A Y, Lu W, et al.Optimal electron density mechanism for hydrogen on the surface and at a vacancy in tungsten[J]. Chin. Phys. Lett., 2012, 29: 077101
[55] Sun L, Jin S, Lu G H, et al.High hydrogen retention in the sub-surfaces of tungsten plasma facing materials: A theoretical insight[J]. Scr. Metall., 2016, 122: 14
[56] Tokunaga K, Takayama M, Muroga T, et al.Depth profile analyses of implanted deuterium in tungsten by secondary ion mass spectrometry[J]. J. Nucl. Mater., 1995, 220: 800
[57] Roth J, Schmid K.Hydrogen in tungsten as plasma-facing material[J]. Phys. Scr., 2011, 145: 014031
[58] Nishijima D, Sugimoto T, Iwakiri H, et al.Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure[J]. J. Nucl. Mater., 2005, 337: 927
[59] Baldwin M J, Doerner R P, Wampler W R, et al.Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasma[J]. Nucl. Fusion, 2011, 51: 103021
[60] Li Y H, Zhou H B, Jin S, et al.Strain-induced variation of electronic structure of helium in tungsten and its effects on dissolution and diffusion[J]. Comput. Mater. Sci., 2014, 95: 536
[61] Zhou H B, Liu Y L, Zhang Y, et al.First-principles investigation of energetics and site preference of He in a W grain boundary[J]. Nucl. Instrum. Methods Phys. Res. Sec., 2009, 267B: 3189
[62] Zhou H B, Ou X, Zhang Y, et al.Effect of carbon on helium trapping in tungsten: A first-principles investigation[J]. J. Nucl. Mater., 2013, 440: 338
[63] Wang X X, Zhang Y, Zhou H B, et al.Effects of niobium on helium behaviors in tungsten: A first-principles investigation[J]. Acta Phys. Sin., 2014, 63: 046103(王欣欣, 张颖, 周洪波等. 铌对钨中氦行为的影响的第一性原理研究[J]. 物理学报, 2014, 63: 046103)
[64] Zhou H B, Jin S, Shu X L, et al.Stress tensor: A quantitative indicator of effective volume and stability of helium in metals[J]. Europhys. Lett., 2011, 96: 66001
[65] Zhou H B, Wang J L, Jiang W, et al.Electrophobic interaction induced impurity clustering in metals[J]. Acta Mater., 2016, 119: 1
[66] Jin S, Liu Y L, Zhou H B, et al.First-principles investigation on the effect of carbon on hydrogen trapping in tungsten[J]. J. Nucl. Mater., 2011, 415: S709
[67] Zhou H B, Momanyi N K, Li Y H, et al.Paving a way to suppress hydrogen blistering by investigating the hydrogen-beryllium interaction in tungsten[J]. RSC Adv., 2016, 6: 103622
[1] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[2] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[3] 贺连龙; 周龙光; 于荣; 叶恒强 . Ti-Al合金相结构与界面特性的电子显微分析及原子尺度计算模拟[J]. 金属学报, 2002, 38(6): 597-601 .
[4] 周刚; 王文皓 . 多元Al-Cu系合金凝固过程中显微偏析的计算模拟[J]. 金属学报, 2000, 36(5): 477-482 .