Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 16-28    DOI: 10.11900/0412.1961.2020.00200
  综述 本期目录 | 过刊浏览 |
镍基合金焊接裂纹研究现状
余磊1,2, 曹睿1,2()
1.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2.兰州理工大学 材料科学与工程学院 兰州 730050
Welding Crack of Ni-Based Alloys: A Review
YU Lei1,2, CAO Rui1,2()
1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
Lei YU, Rui CAO. Welding Crack of Ni-Based Alloys: A Review[J]. Acta Metall Sin, 2021, 57(1): 16-28.

全文: PDF(7636 KB)   HTML
摘要: 

近年来,镍基合金焊接件在航空航天、核电、火电和石油化工等工程领域的应用需求快速增长。本文介绍了镍基合金的分类以及镍基合金焊接方法的研究,由于成本以及技术等的限制,镍基合金的焊接主要采用熔化焊焊接方法。重点综述了镍基合金焊接裂纹的产生机理以及各元素对裂纹的影响。镍基合金熔化焊焊接过程中易产生4种焊接裂纹:结晶裂纹、液化裂纹、失塑裂纹和应变时效裂纹。总体上,结晶裂纹和液化裂纹产生机理已较为明确,焊接过程中低熔点液态薄膜的出现是结晶裂纹和液化裂纹产生的主要因素。失塑裂纹目前仍没有对其明确的定义,镍基合金失塑裂纹产生机理也存在着较大的分歧。镍基合金应变时效裂纹是沉淀强化镍基合金所特有的,裂纹产生与沉淀相的沉淀速率密切相关。杂质元素和添加元素对镍基合金焊接裂纹敏感性有着重要影响,元素的影响虽然已经进行了大量的研究,但元素单独或者协同对裂纹敏感性的具体影响仍需进一步的研究。

关键词 镍基合金焊接裂纹开裂机理杂质元素添加元素    
Abstract

Recently, Ni-based weldments have been widely used in various industries, including aerospace, nuclear power, thermal power, and petrochemicals. In this paper, the classification and welding methods of Ni-based alloys are introduced. Fusion welding methods were mainly used for the welding of Ni-based alloys because of cost and technical limitations. The mechanism of welding cracks in Ni-based alloys and the effects of various elements on cracks are mainly reviewed. Solidification cracking, liquation cracking, ductility-dip cracking, and strain-age cracking frequently occurred in fusion welding processes. The appearance of a low-melting liquid film has been found to be the main reason for the relative clarity of the mechanisms of solidification cracking and liquation cracking. Ductility-dip cracking is still not clearly defined, and its mechanism in Ni-based alloys remains obscure. Strain-age cracking of Ni-based alloys is unique to precipitation-strengthened-Ni-based alloys and closely related to the precipitation rate. Though much research has been done, impurities and addition of elements have a major effect on welding cracks of Ni-based alloys. Therefore, the influence of most elements alone and the synergistic effects on cracks need further study.

Key wordsNi-based alloy    welding crack    cracking mechanism    impurity element    addition element
收稿日期: 2020-06-05     
ZTFLH:  TG406  
基金资助:国家自然科学基金项目(51761027)
作者简介: 余 磊,男,1995年生,博士生
图1  镍基合金焊接4种裂纹类型[7~10](a) solidification cracking of Inconel 718[7] (b) liquation cracking of Inconel 718[8](c) ductility dip cracking of FM-82[9] (d) strain age cracking of Waspaloy[10]
SystemkMaximum solubility / %Final eutectic temperature / oC
Ni-P0.020.32P870
Ni-SAbout 0About 0S637
Ni-B0.040.7B1093
Ni-Si0.78.2Si1143
表1  Ni-P、Ni-S、Ni-B和Ni-Si系统中平衡分配系数、最大固溶度和最终共晶温度[2]
图2  含Nb镍基合金中4种不同显微组织形态的发展示意图[2](a-Ⅰ) high C and low Nb Ni-based alloy (b-Ⅱ) high Nb and C Ni-based alloy with a small quantity of Laves (c-Ⅲ) high Nb and C Ni-based alloy with a large number of Laves (d-Ⅳ) low C Ni-based alloy
AlloyPrecipitateRef.
Inconel 718MC[8]
Inconel 738γ', MC, M3B2, Ni-Zr intermetallics[57,58]
Inconel 617M23(C, B)6[59]
Inconel 939γ', MC[60]
Rene 80γ', M5B3[61]
K465γ', MC[62]
表2  几种镍基合金产生组分液化的沉淀相[8,57~62]
图3  718镍基合金液化裂纹形成机理[8]
图4  延性作为温度函数的示意图[69]
图5  晶间析出物对晶界滑移、应变集中和孔洞形成的影响[9](a) straight grain boundaries(b) effect of intergranular precipitates(c) effect of intergranular precipitates and tortuous grain boundaries
TypeElementDDC sensitivityMechanism
ImpurityHIncreaseThe interaction of the increase of the local plastic deformation near the grain
elementboundary and the decrease of the bonding force between the precipitate and
the grain boundary
S, PIncreaseSegregation at the grain boundary reduces the bonding strength of grain
boundary and causes grain boundary embrittlement
AdditionBDecreaseIncrease the bonding force of metal atoms on grain boundary, and increase the
elementfracture resistance of grain boundary
NbDecreaseFormation of NbC intergranular precipitate provides grain boundary locking,
changes grain boundary morphology, and hinders grain boundary sliding
and formation of porosity
MnDecreaseStrong affinity for S
TiDecreaseFormation of Ti rich nitrides and carbides makes the equilibrium phase changes
to (MTi)(CN) during the solidification temperature range, and provides grain
boundary locking effect
表3  元素对失塑裂纹(DDC)影响的汇总[9]
图6  镍基合金应变时效裂纹(SAC)形成示意图[76]
图7  Al和Ti含量对镍基合金应变时效开裂敏感性的影响[76]
Alloy systemElementInfluence
Rene 41CLow carbon content resists SAC

713C

C

Low carbon content is not conducive to resist SAC
Rene 41BBeneficial
Rene 41OHarmful
表4  合金元素对镍基合金SAC的影响
1 Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 20
1 郭建亭. 高温合金材料学 (上册) [M]. 北京: 科学出版社, 2008: 20
2 DuPont J N, Lippold J C, Kiser S D, translated by Wu Z Q, Zhang C, Yu M L, et al. Welding Metallurgy and Weldability of Nickel-Base Alloys [M]. Shanghai: Shanghai Scientific and Technological Literature Press, 2014: 2, 100, 103, 129, 214, 223, 235
2 DuPont J N, Lippold J C, Kiser S D著, 吴祖乾, 张 晨, 虞茂林等译. 镍基合金焊接冶金和焊接性 [M]. 上海: 上海科学技术文献出版社, 2014: 2, 100, 103, 129, 214, 223, 235
3 Park J H, Kim Y H, Baek H J, et al. A study on process development of super-TIG welding for 9% nickel steel with alloy 625 [J]. J. Manuf. Processes, 2019, 40: 140
4 Yang J. Property of arc surfacing Inconel alloy 625 cladding on 30CrMo steel [D]. Lanzhou: Lanzhou University of Technology, 2011
4 杨 洁. 30CrMo钢表面堆焊Inconel 625镍基合金性能的研究 [D]. 兰州: 兰州理工大学, 2011
5 Wei K, Zhang M C, Xie X S. Recrystallization mechanisms in hot working processes of a nickel-based alloy for ultra-supercritical power plant application [J]. Acta Metall. Sin., 2017, 53: 1611
5 韦 康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理 [J]. 金属学报, 2017, 53: 1611
6 Li Y F. Study of stress corrosion cracking susceptibility of nickel-based welds in safe-end dissimilar metal weld in pressurized water reactor [D]. Hefei: University of Science and Technology of China, 2018
6 李毅丰. 压水堆安全端异种金属焊接接头镍基焊缝材料应力腐蚀开裂敏感性研究 [D]. 合肥: 中国科学技术大学, 2018
7 Ye X. Microstructure evolution and hot cracking mechanism of Inconel 718 Ni-based superalloy thin-wall casting component welding joint [D]. Shanghai: Shanghai Jiao Tong University, 2015
7 叶 欣. Inconel 718合金薄壁铸件焊接接头组织演变和热裂纹研究 [D]. 上海: 上海交通大学, 2015
8 Zhang D M. Research on laser welding and the mechanism of liquation crack of 718 superalloy [D]. Shanghai: Shanghai University of Engineering Science, 2015
8 张冬梅. 718高温合金激光焊接及其液化裂纹形成机理研究 [D]. 上海: 上海工程技术大学, 2015
9 Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: Part Ⅱ-Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, A380: 245
10 Norton S J. Development of a Gleeble based test for post weld heat treatment cracking in nickel alloys [D]. Ohio: The Ohio State University, 2002
11 Chen F. Microstructures and properties of 347 stainless steel with surface cladding of Inconel690 alloy and variation of them after hot isostatic pressing [D]. Lanzhou: Lanzhou University of Technology, 2013
11 陈 峰. 347不锈钢表面堆焊Inconel690合金组织与性能及热等静压对其影响 [D]. 兰州: 兰州理工大学, 2013
12 Xu C Z, Ao Y, Su D D, et al. Development of nuclear-grade ENiCrFe-7 nickel-base alloy electrode [J]. Heat Treat., 2020, 35(2): 21
12 徐长征, 敖 影, 苏东东等. 核级ENiCrFe-7镍基合金电焊条的研制 [J]. 热处理, 2020, 35(2): 21
13 Guo X, He P, Xu K, et al. Microstructure and mechanical properties of deposited metal for nuclear plant nickel alloy welding wire [J]. Trans. China Weld. Inst., 2020, 41(4): 26
13 郭 枭, 何 鹏, 徐 锴等. 一种核电用镍基合金焊丝熔敷金属的组织与性能 [J]. 焊接学报, 2020, 41(4): 26
14 Cherif S, Zakaria B. Effect of welding current on microstructures and mechanical properties of welded Ni-base superalloy INC738LC [J]. World J. Eng., 2018, 15: 14
15 Xu Y L, Yuan X W. Welding process test and crack control of UNSN06601 nickel-base alloy [J]. Mach. China, 2020, 4: 134
15 徐仰连, 袁相伟. UNSN06601镍基合金焊接工艺试验及裂纹控制 [J]. 中国机械, 2020, 4: 134
16 Liu Y J, Guo Z Y, Fang H P. Optimization of MIG surfacing process parameters of GH3128 nickel base alloy based on RSM [J]. Hot Work. Technol., 2020, 49(15): 114
16 刘拥军, 郭占英, 方海鹏. 基于RSM的GH3128镍基合金MIG堆焊工艺参数优化 [J]. 热加工工艺, 2020, 49(15): 114
17 Zhang Z L. Research on welding procedure of single-layer electroslag surfacing with band-electrode for ENiCrMo-3 grade nickel-base alloy [J]. Electr. Weld. Mach., 2020, 50(5): 67
17 张兆林. ENiCrMo-3等级镍基合金单层带极电渣堆焊工艺研究 [J]. 电焊机, 2020, 50(5): 67
18 Yu X P. Introduction of the welding technique of nickel base alloy NO6600 and NO6625 in an oxygen pipe [J]. Petro. Chem. Constr., 2020, 42(3): 51
18 于秀平. 镍基合金NO6600和NO6625氧气管线焊接工艺探讨 [J]. 石油化工建设, 2020, 42(3): 51
19 Wang R, Yang S L, Jia C C, et al. Study on microstructure of 718 nickel-based superalloy laser welded joint [J]. Hot Work. Technol., 2017, 46(3): 202
19 王 润, 杨尚磊, 贾晨程等. 718镍基合金激光焊接接头微观组织研究 [J]. 热加工工艺, 2017, 46(3): 202
20 Ma G Y, Wu D J, Niu F Y, et al. Microstructure evolution and mechanical property of pulsed laser welded Ni-based superalloy [J]. Opt. Laser. Eng., 2015, 72: 39
21 Wu D D, Chai D S, Ma G Y, et al. Effect of pulsed laser welding with filler wire on weld forming and microstructures of thin nickel-based alloy sheet [J]. Laser Optoelectron. Prog., 2017, 54(3): 191
21 吴东东, 柴东升, 马广义等. 脉冲激光填丝焊对镍基合金薄板焊缝成形及微观组织的影响 [J]. 激光与光电子学进展, 2017, 54(3): 191
22 Zhang H, Sun T B, Yu M X. Study on fatigue property of electron beam welded joint of GH99 nickel-based alloy [J]. Eng. Test, 2014, 54(4): 26
22 张 航, 孙通伯, 于明玄. GH 99镍基合金薄板电子束焊接头疲劳性能研究 [J]. 工程与试验, 2014, 54(4): 26
23 Li N, Wang G, Wang T, et al. Weldability of Inconel 718 and 304 stainless steel by electron beam welding [J]. Trans. China Weld. Inst., 2019, 40(2): 82
23 李 宁, 王 刚, 王 廷等. Inconel 718镍基合金与304不锈钢电子束焊接 [J]. 焊接学报, 2019, 40(2): 82
24 Cui W D, Wang S, Zhang S, et al. Influence of welding current on microstructure and properties of nickel-based alloy hardfacing by plasma transferred arc welding [J]. Weld. Join., 2017, (12): 36
24 崔文东, 王 爽, 张 松等. 堆焊电流对镍基合金等离子堆焊层组织及性能的影响 [J]. 焊接, 2017, (12): 36
25 Guo X M, Zheng Y G, Yao Z M. Cavitation erosion of PTA weld-surfaced Ni-based alloy layers [J]. Chin. J. Mater. Res., 2002, 16: 570
25 国旭明, 郑玉贵, 姚治铭. Ni基等离子堆焊合金的空蚀行为 [J]. 材料研究学报, 2002, 16(6): 570
26 Kim H J, Kim Y J. Wear and corrosion resistance of PTA weld surfaced Ni and Co based alloy layers [J]. Surf. Eng., 2013, 15: 495
27 Shi K, Yu Z S, Li J, et al. Effect of brazing holding time on microstructure and property of GH738/GH4169 vacuum brazing joint [J]. Hot Work. Technol., 2010, 39(1): 112
27 石 昆, 于治水, 李 军等. 钎焊保温时间对GH738与GH4169镍基合金真空钎焊接头组织性能的影响 [J]. 热加工工艺, 2010, 39(1): 112
28 Huang Z L, Lu S P, Li F Y, et al. Morphology of boride brittle phase in nickel-base alloy brazing joint and its elimination method [J]. J. Mater. Eng., 1984, (2): 26
28 黄振隆, 卢寿平, 李风英等. 镍基合金钎焊接头中的硼化物脆性相形态及其消除方法 [J]. 材料工程, 1984, (2): 26
29 Zhang L X, Fen J C. Interface structure and strength analysis of brazed GH3044 nickel-based alloy joint [J]. Mater. Sci. Technol., 2009, 17: 770
29 张丽霞, 冯吉才. GH3044镍基合金钎焊接头的界面组织和强度分析 [J]. 材料科学与工艺, 2009, 17: 770
30 Yu Z S, Shi K, Li R F. Effect of brazing clearance on microstructure and properties of vacuum brazing lap joint of Ni-based alloys [J]. Mater. Mech. Eng., 2010, 34(7): 5
30 于治水, 石 昆, 李瑞峰. 钎缝间隙对不同镍基合金真空钎焊搭接接头组织和性能的影响 [J]. 机械工程材料, 2010, 34(7): 5
31 Yu Z S, Shi K, Li R F. Effects of brazing temperature on vacuum joint microstructure and microhardness of inconel superalloy [J]. Hot Work. Technol., 2009, 38(17): 116
31 于治水, 石 昆, 李瑞峰. 钎焊温度对镍基合金真空钎焊接头组织及硬度的影响 [J]. 热加工工艺, 2009, 38(17): 116
32 Han F, Wang B, Kong Q J, et al. Brazing of K465 alloy K465 and GH3039 dissimilar alloy [J]. Weld. Technol., 2011, 40(5): 26
32 韩 峰, 王 斌, 孔庆吉等. K465合金及K465与GH3039异种合金的钎焊 [J]. 焊接技术, 2011, 40(5): 26
33 Xu H J. The superplastic forming and diffusion bonding of Inconel 718 alloy [J]. Aerosp. Mater. Technol., 1997, 27(4): 36
33 徐海江. 因康镍718合金的超塑成形和扩散连接 [J]. 宇航材料工艺, 1997, 27(4): 36
34 Han W B, Zhang K F, Wang B, et al. Superplasticity and diffusion bonding of IN718 superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2007, 20: 307
35 Lin T S, Li H X, He P, et al. Effect of bonding parameters on microstructures and properties during TLP bonding of Ni-based super alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2112
36 Hou J B, Dong B M, Ouyang X L. TLP bonding of Ni3Al base alloy(IC10) [J]. J. Mater. Eng., 2002, (suppl.): 288
37 Bakhtiari R, Shamsabadi A Y, Moradi K A. Shear strength/microstructure relationship for dissimilar IN738/IN718 TLP joints [J]. Weld. World, 2020, 64: 219
38 Wan D, Fang W P, Chen H X, et al. Research progress of interlayer alloys for transient liquid phase (TLP) diffusion bonding of Ni-based superalloys [J]. Weld. Join., 2016, (8): 20
38 万 娣, 房卫萍, 陈和兴等. 镍基高温合金TLP扩散焊中间层材料研究进展 [J]. 焊接, 2016, (8): 20
39 Bo C Y, Yang Y T, Zhou S F, et al. Research status and development on the welding solidification cracking sensitivity of the nickel-based corrosion-resistance materials [J]. Weld. Join., 2006, (2): 15
39 薄春雨, 杨玉亭, 周世锋等. 镍基耐蚀材料焊接结晶裂纹敏感性的研究现状与趋势 [J]. 焊接, 2006, (2): 15
40 Zhang H Y. Study of S, P on the solidification cracking sensitivity for Inconel 690 welding wire deposited metal [D]. Harbin: China Academy of Machinery Science and Technology, 2011
40 张皓月. S、P对Inconel 690焊丝熔敷金属结晶裂纹敏感性影响的研究 [D]. 哈尔滨: 机械科学研究总院, 2011
41 Li G. Microstructure, properties and mechanism on hot crackings of laser welded dissimilar joints with filler wire in nuclear power plants [D]. Shanghai: Shanghai Jiao Tong University, 2015
41 李 刚. 核电异种金属激光填丝焊接头组织与性能及热裂纹形成机理 [D]. 上海: 上海交通大学, 2015
42 Borland J C. Generalized theory of super-solidus cracking in welds and castings-an initial development [J]. Brit. Weld. J., 1960, 7: 508
43 DuPont J N, Michael J R, Newbury B D. Welding metallurgy of alloy HR-160 [J]. Weld. J., 1999, 78: 408
44 Mizia R E, Michael J R, Williams D B, et al. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications-part Ⅱ: Nickel-based alloys [J]. Weld. J., 2004, 83: 289
45 Zhang W Y. Welding Metallurgy (Fundamental) [M]. Beijing: China Machine Press, 1995: 280
45 张文钺. 焊接冶金学(基本原理) [M]. 北京: 机械工业出版社, 1995: 280
46 DuPont J N, Robino C V, Anderson T D. Influence of Gd and B on solidification behaviour and weldability of Ni-Cr-Mo alloy [J]. Sci. Technol. Weld. Join., 2008, 13: 550
47 Vincent R. Precipitation around welds in the nickel-base superalloy, Inconel 718 [J]. Acta Metall., 1985, 33: 1205
48 Cieslak M J, Stephens J J, Carr M J. A study of the weldability and weld related microstructure of cabot alloy 214 [J]. Metall. Trans., 1988, 19A: 657
49 Richards N L, Chaturvedi M C. Effect of minor elements on weldability of nickel base superalloys [J]. Int. Mater. Rev., 2000, 45: 109
50 Näkki J, Tuominen J, Vuoristo P. Effect of minor elements on solidification cracking and dilution of alloy 625 powders in laser cladding [J]. J. Laser Appl., 2017, 29: 012014
51 Mostafaei M, Abbasi S M. Influence of Zr content on the incipient melting behavior and stress-rupture life of CM247 LC nickel base superalloy [J]. J. Alloys Compd., 2015, 648: 1031
52 Bo C Y, Yang Y T, Li X Y, et al. Effect of Nb on welding solidification cracking of 690 nickel alloy surfacing metal [J]. Weld. Join., 2006, (6): 41
52 薄春雨, 杨玉亭, 李向阳等. Nb对690镍合金带极堆焊金属结晶裂纹的影响 [J]. 焊接, 2006, (6): 41
53 Bo C Y, Yang Y T, Chou S G, et al. Solidification cracking mechanism of 690 nickel-based alloy surfacing metal [J]. Trans. China Weld. Inst., 2007, 28(10): 69
53 薄春雨, 杨玉亭, 丑树国等. 690镍基合金焊接结晶裂纹形成机理分析 [J]. 焊接学报, 2007, 28(10): 69
54 Dupont J N, Robino C V, Marder A R. Modeling solute redistribution and microstructural development in fusion welds of Nb-bearing superalloys [J]. Acta Mater., 1998, 46: 4781
55 Fen Z C, Yu E J, Zhu H D, et al. Investigation on the welding liquation cracks in cast Ni-base superalloys [J]. Trans. China Weld. Inst., 1983, 4(2): 79
55 冯钟潮, 于尔靖, 朱鸿德等. 铸造镍基合金焊接液化裂纹 [J]. 焊接学报, 1983, 4(2): 79
56 Thompson E G, Genculu S. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test [J]. Weld. J., 1983, 62: 337S
57 Ojo O A, Richards N L, Chaturvedi M C. Liquation of various phases in HAZ during welding of cast Inconel* 738LC [J]. Mater. Sci. Technol., 2004, 20: 1027
58 Chen K C, Chen T C, Shiue R K, et al. Liquation cracking in the heat-affected zone of IN738 superalloy weld [J]. Metals, 2018, 8: 387
59 Ren W J, Lu F G, Yang R J, et al. Liquation cracking in fiber laser welded joints of Inconel 617 [J]. J. Mater. Process. Technol., 2015, 226: 214
60 González M A, Martínez D I, Pérez A, et al. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy [J]. Mater. Charact., 2011, 62: 1116
61 Ojo O A, Zhang H R. Analytical electron microscopy study of Boron-rich grain boundary microconstituent in directionally solidified Rene 80 superalloy [J]. Metall. Mater. Trans., 2008, 39A: 2799
62 Li Q G, Lin X, Wang X H, et al. Research on the cracking control of laser additive repaired K465 superalloy [J]. Rare Met. Mater. Eng., 2017, 46: 955
62 李秋歌, 林 鑫, 王杏华等.激光增材修复K465高温合金裂纹控制研究 [J]. 稀有金属材料与工程, 2017, 46: 955
63 Baeslack Ⅲ W A, Nelson D E. Morphology of weld heat-affected zone liquation in cast alloy 718 [J]. Metallography, 1986, 19: 371
64 Chen W, Chaturvedi M C, Richards N L. Effect of boron segregation at grain boundaries on heat-affected zone cracking in wrought INCONEL 718 [J]. Metall. Mater. Trans., 2001, 32A: 931
65 Kelly T J. Elemental effects on cast 718 weldability [J]. Weld. J., 1989, 68: 44
66 Thompson R G. Microfissuring of alloy 718 in the weld heat-affected zone [J]. JOM, 1988, 40(7): 44
67 Haddrill D M, Baker R G. Microcracking in austenitic weld metal [J]. Brit. Weld. J., 1965, 12
68 Hemsworth B, Boniszewski T, Eaton N F. Classification and definition of high temperature welding cracks in alloys [J]. Met. Constr. Brit. Weld. J., 1969, 1: 5
69 Nissley N. Intermediate temperature grain boundary embrittlement in Ni-base weld metals [D]. Ohio: The Ohio State University, 2006
70 Yamaguchi S, Kobayashi H, Matsumiva T, et al. Effect of minor elements on hot workability of nickel-base superalloys [J]. Met. Technol., 1979, 6: 170
71 Noecker II F F, DuPont J N. Metallurgical investigation into ductility dip cracking in Ni-based alloys: Part Ⅱ [J]. Weld. J., 2009, 88: 62S
72 Cao R, Liu G, Chen J H, et al. Formation mechanism and research progress of ductility dip cracking in welding of nickel-based materials [J]. Weld. Join., 2018, (7): 7
72 曹 睿, 刘 刚, 陈剑虹等. 镍基材料焊接中高温失塑裂纹DDC的生成机理及研究进展 [J]. 焊接, 2018, (7): 7
73 Young G A, Capobianco T E, Penik M A, et al. The mechanism of ductility dip cracking in nickel-chromium alloys [J]. Weld. J., 2008, 87: 31S
74 Zhang Y C, Nakagawa H, Matsuda F. Weldability of Fe-36%Ni alloy (report Ⅵ): Further investigation on mechanism of reheat hot cracking in weld metal (materials, metallurgy & weldability) [J]. Trans. JWRI, 1985, 14(2): 125
75 Du Z Y. Material Connection Principle [M]. Beijing: China Machine Press, 2011: 221
75 杜则裕. 材料连接原理 [M]. 北京: 机械工业出版社, 2011: 221
76 Kou S. Welding Metallurgy [M]. 2nd Ed., New York: John Wily & Sons, 2002: 375
77 Yin Y, Zhang L L, Li S T, et al. Study on crack of K438 superalloy repair welding joint after heat treatment [J]. Hot Work. Technol., 2017, 46(7): 243
77 尹 懿, 张丽玲, 李水涛等. K438高温合金补焊接头热处理裂纹研究 [J]. 热加工工艺, 2017, 46(7): 243
78 Xie J L. Microstructures, mechanical properties and defect control of welding joints of Ni-based superalloy for skew plate frame [D]. Hefei: University of Science and Technology of China, 2019
78 谢吉林. 斜支板承力框架用高温合金焊接接头组织、力学性能与缺陷控制研究 [D]. 合肥: 中国科学技术大学, 2019
79 McKeown D. Re-heat cracking in high nickel alloy heat-affected zone [J]. Weld. J., 1971, 50: 201
[1] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[2] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[3] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[4] 张茂龙, 鲁艳红, 陈胜虎, 戎利建, 陆皓. 不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响[J]. 金属学报, 2020, 56(8): 1057-1066.
[5] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[6] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[7] 王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.
[8] 韦康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理[J]. 金属学报, 2017, 53(12): 1611-1619.
[9] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[10] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[11] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[12] 谢君,田素贵,刘姣,周晓明,苏勇. FGH95粉末镍基合金蠕变期间位错网的形成与分析[J]. 金属学报, 2013, 49(7): 838-844.
[13] 张姝,田素贵,于慧臣,于莉丽,于兴福. [111]取向镍基单晶合金在蠕变期间组织演化的有限元分析[J]. 金属学报, 2012, 48(5): 561-568.
[14] 张胜寒 檀玉 梁可心. 光电化学法研究镍基合金在288℃高温水中生成氧化膜的半导体性质[J]. 金属学报, 2011, 47(9): 1147-1152.
[15] 赵帅 李秀艳 戎利建. 一种奥氏体FeNi基合金中的锯齿流变现象[J]. 金属学报, 2011, 47(8): 1017-1021.