Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 215-223    DOI: 10.11900/0412.1961.2020.00180
  研究论文 本期目录 | 过刊浏览 |
高钨镍基高温合金K416BW相的析出行为
朱玉平1,2, 盛乃成1,3(), 谢君1, 王振江1, 荀淑玲1, 于金江1, 李金国1, 杨林2, 侯桂臣1, 周亦胄1, 孙晓峰1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.沈阳工业大学 材料科学与工程学院 沈阳 110870
3.中国科学院轻型动力创新研究院 北京 100190
Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B
ZHU Yuping1,2, Naicheng SHENG1,3(), XIE Jun1, WANG Zhenjiang1, XUN Shuling1, YU Jinjiang1, LI Jinguo1, YANG Lin2, HOU Guichen1, ZHOU Yizhou1, SUN Xiaofeng1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Technology, Shenyang University of Technology, Shenyang 110870, China
3.Innovation Academy for Light-Duty Gas Turbine, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
Yuping ZHU, SHENG Naicheng, Jun XIE, Zhenjiang WANG, Shuling XUN, Jinjiang YU, Jinguo LI, Lin YANG, Guichen HOU, Yizhou ZHOU, Xiaofeng SUN. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. Acta Metall Sin, 2021, 57(2): 215-223.

全文: PDF(8934 KB)   HTML
摘要: 

研究了K416B合金中富W相的析出行为与合金浇注温度和凝固速率的关系。结果表明,在相同冷却速率下,合金的浇注温度由1500℃降低到1450℃时,晶粒尺寸明显减小。在不同浇注温度下,合金中均有块状α-W相在残余共晶中析出,α-W相形貌差别不大。合金的残余共晶中存在大尺寸的M6C相,而残余共晶的边缘处有小尺寸的M6C相。高凝固速率时,合金中富W相数量减少、尺寸减小,表明富W相析出受到明显抑制。对于铸造高钨镍基高温合金,选择合适的浇注温度以及保温体系加快凝固初期的冷却速率,可以控制富W相的析出和转变,从而优化合金性能。

关键词 镍基高温合金富W相α-WM6C凝固速率    
Abstract

The high temperature strength of Ni-based cast superalloys can be significantly improved by adding tungsten (W), a solid solution strengthening element. Hence, superalloys with high W content have been developed as key materials for the preparation of aircraft engine blades. However, the high segregation coefficient of W results in inconsistent composition and microstructure during the solidification process, which can be difficult to eliminate via heat treatment leading to deteriorated mechanical properties. The Ni-based superalloy K416B contains approximately 16.5%W (mass fraction) and exhibits a high tendency to precipitate W-rich phases, such as the α-W and M6C phases, which not only consume a large amount of W in the matrix but also reduce the solid solution strengthening ability of the alloy. W-rich precipitates also become the origin and propagation paths of cracks during stress-rupture testing. Much research on high W-containing, Ni-based superalloys has focused on the effects of W content on W-rich phase formation and mechanical properties. However, the roles of casting temperature and cooling rate on the formation of the W-rich phase are still unclear. In this work, five groups of K416B alloy test bars with the same composition were prepared with different processes. Three casting temperatures were chosen, and the cooling rate was controlled by burying sand in the thick shell and single shell, respectively. The relationship between the precipitation behavior of the W-rich phase in the K416B alloy and casting temperature, and solidification rate under different casting processes were analyzed using SEM and EDS. When the casting temperature is lowered from 1500°C to 1450°C, the grain size is significantly reduced. Results show massive α-W phases in the residual eutectic of the alloy at different casting temperatures, and the morphology of the α-W phase show few differences. The larger M6C phase in the alloy exists with residual eutectic, and the small M6C phase is embedded at the edge of the residual eutectic. At a high solidification rate, the precipitation of the W-rich phase is inhibited, which is primarily manifested by the decreased number and size of the W-rich phase in the alloy. When casting high W-containing Ni-based superalloys, choosing an appropriate casting temperature and adopting an appropriate heat preservation system to accelerate the cooling rate during solidification will affect the precipitation and transformation of W-rich phases, and optimize the properties of the alloy.

Key wordsNi-based superalloy    W-rich phase    α-W    M6C    cooling rate
收稿日期: 2020-05-27     
ZTFLH:  TG24  
基金资助:国家自然科学基金项目(51971214);中国科学院引才计划项目(51771191);中国科学院轻型动力创新研究院创新引导基金项目(CXYJJ20-QN-02)
作者简介: 朱玉平,男,1996年生,硕士生
图1  不同浇注温度下K416B合金的显微组织(a) 1550oC (b) 1500oC (c) 1450oC
图2  浇注温度1550℃时采用单壳冷却所得K416B合金的典型组织
PhaseCWNbHfNi
MC16.911.737.524.9Bal.
M6C9.270.900Bal.
α-W5.491.200Bal.
表1  3种析出相EDS分析结果 (mass fraction / %)
图3  K416B合金降温DSC曲线
图4  K416B合金在1320℃保温30 min并淬火后的组织形貌
图5  不同温度浇铸后K416B合金的典型微观组织(a, d) 1550oC (b, e) 1500oC (c, f) 1450oC
Temperature / oCResidual eutectic area fraction / %Secondary dendrite arm spacing / μm
155010.9216.19
150012.1415.48
145014.2211.31
表2  不同浇注温度得到的K416B合金中残余共晶含量及二次枝晶间距
图6  浇注温度1550℃时采用厚壳埋砂和单壳浇铸工艺所得K416B合金的显微组织

Process

Area fraction of residual eutecticArea fraction of W-rich phase
Thick shell buried sand16.01.0
Single shell23.58.0
表3  浇注温度1550℃时采用厚壳埋砂和单壳浇铸工艺所得K416B合金残余共晶及富W相面积分数 (%)
图7  浇注温度为1550℃时均温温度与模壳质量的关系
图8  模壳质量为1.5 kg时均温温度与浇注温度的关系
1 Tang Z J, Guo T M, Fu Y, et al. Research present situation and the development prospect of nickel-based superalloy [J]. Met. World, 2014, (1): 36
1 唐中杰, 郭铁明, 付 迎等. 镍基高温合金的研究现状与发展前景 [J]. 金属世界, 2014, (1): 36
2 Yabansu Y C, Iskakov A, Kapustina A, et al. Application of Gaussian process regression models for capturing the evolution of microstructure statistics in aging of nickel-based superalloys [J]. Acta Mater., 2019, 178: 45
3 Zhang J, Lou L H. Basic research in development and applicationof cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637
3 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
4 Reed R C. The Superalloys Fundamentals and Applications [M]. London: Cambridge University Press, 2006: 1
5 Guo J T. Materials Science and Engineering for Superalloys [M]. Vol.1, Beijing: Science Press, 2008: 1
5 郭建亭. 高温合金材料学 [M]. 上册, 北京: 科学出版社, 2008: 1
6 Yue Q Z, Liu L, Yang W C, et al. Research progress of creep behaviors in advanced Ni-based single crystal superalloys [J]. Mater. Rep., 2019, 33: 479
6 岳全召, 刘 林, 杨文超等. 先进镍基单晶高温合金蠕变行为的研究进展 [J]. 材料导报, 2019, 33: 479
7 Wang Z Q. Key manufacturing technology of advanced aeroengine [J]. Aeron. Manuf. Technol., 2015, (22): 34
7 王增强. 先进航空发动机关键制造技术 [J]. 航空制造技术, 2015, (22): 34
8 Sun F, Tong J Y, Feng Q, et al. Microstructural evolution and deformation features in gas turbine blades operated in-service [J]. J. Alloys Compd., 2015, 618: 728
9 Kang B I, Han C H, Shin Y K, et al. Effects of boron and zirconium on grain boundary morphology and creep resistance in nickel-based superalloy [J]. J. Mater. Eng. Perform., 2019, 28: 7025
10 Rai R K, Sahu J K, Jena P S M, et al. High temperature tensile deformation of a directionally solidified nickel base superalloy: Role of micro constituents [J]. Mater. Sci. Eng., 2017, A705: 189
11 Huang B, Xiong W H, Zhang M, et al. Effect of W content in solid solution on properties and microstructure of (Ti, W)C-Ni3Al cermets [J]. J. Alloys Compd., 2016, 676: 142
12 Guth S, Doll S, Lang K H. Influence of phase angle on lifetime, cyclic deformation and damage behavior of Mar-M247 LC under thermo-mechanical fatigue [J]. Mater. Sci. Eng., 2015, A642: 42
13 Meyer A, Daenicke E, Horke K, et al. Metal injection moulding of nickel-based superalloy CM247LC [J]. Powder Metall., 2016, 59: 51
14 Wang L N, Sun X F, Guan H R. Effect of melt heat treatment on MC carbide formation in nickel-based superalloy K465 [J]. Results Phys., 2017, 7: 2111
15 Du B N, Yang J X, Cui C Y, et al. Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy [J]. Mater. Des., 2015, 65: 57
16 Raju S V, Oni A A, Godwal B K, et al. Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure [J]. J. Alloys Compd., 2015, 619: 616
17 Zhang B Q. The research on transient liquid phase bonding of Mar-M247 nickel-based superalloys [D]. Chongqing: Chongqing University, 2018
17 张邦强. Mar-M247镍基高温合金瞬时液相连接研究 [D]. 重庆: 重庆大学, 2018
18 Zhou T J, Ding H S, Ma X P, et al. Microstructure and stress-rupture life of high W-content cast Ni-based superalloy after 100-1100oC thermal exposures [J]. Mater. Sci. Eng., 2018, A725: 299
19 Yang J X, Li J G, Wang M, et al. Effects of heat treatment process on the microstructure and properties of a new cast nickel-based superalloy [J]. Acta Metall. Sin., 2012, 48: 654
19 杨金侠, 李金国, 王 猛等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响 [J]. 金属学报, 2012, 48: 654
20 Yang Y H. Investigation of microstructure and mechanical properties of K416B alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
20 杨彦红. K416B镍基高温合金组织和性能研究 [D]. 沈阳: 中国科学院金属研究所, 2012
21 Xu Z F, Jiang L, Dong J S, et al. The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni-Mo-Cr superalloy [J]. J. Alloys Compd., 2015, 620: 197
22 Zheng L. The effects of tantalum and ruthenium on the microstructures and properties of low chromium and high tungsten content cast nickel-base superalloys [D]. Xi􀆳an: Xi􀆳an University of Technology, 2004
22 郑 亮. Ta和Ru对低Cr高W铸造镍基高温合金组织及性能的影响 [D]. 西安: 西安理工大学, 2004
23 Zheng L. Formation and transformation of α phase in Ta-containing low Cr and high W content cast Ni-base superalloys [J]. Chin. J. Nonferrous. Met., 2005, 15: 1566
23 郑 亮. 含Ta低Cr高W铸造镍基高温合金中α相的形成与转变 [J]. 中国有色金属学报, 2005, 15: 1566
24 Wang W Y, Shang S L, Wang Y, et al. Impact of W on structural evolution and diffusivity of Ni-W melts: An ab initio molecular dynamics study [J]. J. Mater. Sci., 2015, 50: 1071
25 Ma Y H, Zhao K, Yang F X, et al. Precipitation of α-W phase in nickel-based superalloy [J]. J. Chin. Electr. Microsc. Soc., 2005, 24: 297
25 马永会, 赵 锴, 杨飞雪等. 镍基高温合金中α-W相的析出 [J]. 电子显微学报, 2005, 24: 297
26 Hu H Q. Principles of Metal Solidification [M]. 2nd Ed., Beijing: Mechanical Industry Press, 2000: 1
26 胡汉起. 金属凝固原理 [M]. 第2版,北京: 机械工业出版社, 2000: 1
27 Xie J. Preparation technology, mechanical properties and application of K416B Ni-base superalloy [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2015
27 谢 君. K416B镍基合金的制备工艺和力学性能研究 [R]. 沈阳: 中国科学院金属研究所, 2015
28 Ge H C, Yuan G Q, Peng C. Physical Chemistry [M]. Beijing: Higher Education Press, 2008: 1
28 葛华才, 袁高清, 彭 程. 物理化学 [M]. 北京: 高等教育出版社, 2008: 1
29 Takamichi I, Roderick I L G, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2005: 1
29 Takamichi I, Roderick I L G著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2005: 1
30 Liang Z F, Pan Y T, Feng M Y, et al. Research on thermal properties of coal gangue [J]. Coal Technol., 2018, 37(10): 231
30 梁志峰, 潘永泰, 冯茂原等. 煤矸石的热物性研究 [J]. 煤炭技术, 2018, 37(10): 231
31 Guo J T. Materials Science and Engineerning for Superalloy [M]. Vol.2, Beijing: Science Press, 2008: 1
31 郭建亭. 高温合金材料学 [M]. 中册, 北京: 科学出版社, 2008: 1
32 Zhang A W, Zhang S, Liu F, et al. Effect of cooling rate on phosphorus segregation behavior and the corresponding precipitation of γ'' and γ' phases in IN718 alloy [J]. J. Mater. Sci. Technol., 2019, 35: 1485
33 Gong L, Chen B, Zhang L, et al. Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34: 811
34 Hua H Y, Xie J, Shu D L, et al. Influence of W content on the microstructure of nickel base superalloy with high W content [J]. Acta Metall. Sin., 2020, 56: 161
34 华涵钰, 谢 君, 舒德龙等. W含量对一种高W镍基高温合金显微组织的影响 [J]. 金属学报, 2020, 56: 161
35 Zhao H B, Feng W, Zhou T J. Distribution of primary M6C carbide in large nickel-based superalloy casting [J]. Found. Technol., 2017, 38: 1288
35 赵会彬, 冯 薇, 周同金. 大型镍基高温合金铸件中初生M6C碳化物的分布规律 [J]. 铸造技术, 2017, 38: 1288
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[7] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[8] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[9] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[10] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[11] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[12] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[13] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[14] 任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.
[15] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.