Processing math: 100%
Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 237-246    DOI: 10.11900/0412.1961.2020.00242
  研究论文 本期目录 | 过刊浏览 |
喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响
李晓倩1,2, 王富国1, 梁爱民1,2()
1.中国科学院兰州化学物理研究所 材料磨损与防护重点实验室 兰州 730000
2.中国科学院大学 材料与光电研究中心 北京 100049
Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings
LI Xiaoqian1,2, WANG Fuguo1, LIANG Aimin1,2()
1.Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
Xiaoqian LI, Fuguo WANG, Aimin LIANG. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. Acta Metall Sin, 2021, 57(2): 237-246.

全文: PDF(4256 KB)   HTML
摘要: 

采用大气等离子喷涂制备了Ta2O5原位复合钽基纳米晶涂层,利用SEM、微束XRD、微动摩擦磨损实验机及非接触三维表面轮廓仪等技术手段并结合计算分析,考察了喷涂功率、主气(Ar)流量等对钽基涂层表面Ta2O5含量、晶粒尺寸、显微硬度和摩擦磨损性能等的影响规律及原因。在考察范围内,随喷涂功率增大,钽基涂层表面Ta2O5含量呈先减小后增大的变化,而涂层表面α-Ta的晶粒尺寸及点阵畸变则均呈先增大后减小的变化;随Ar气流量增大,涂层表面Ta2O5含量总体呈减小趋势,在流量为2.17×10-3~2.33×10-3 m3/s时达到最低,α-Ta的晶粒尺寸与点阵畸变的变化呈负相关性;采用间断喷涂方法时涂层表面Ta2O5含量降低,α-Ta晶粒尺寸及点阵畸变均略有减小。通过对喷涂相关微观过程特点的分析,对这些规律作了阐释。涂层的显微硬度与其表面Ta2O5含量相关,高硬度涂层的表面Ta2O5含量相对较低;干摩擦条件下晶粒较大、Ta2O5含量较少的涂层抵御硬质陶瓷低速刻划的能力较差;边界润滑状态下硬度较高的涂层表现出更优的抗磨减摩性能;采取间断喷涂可获得摩擦学性能最佳的涂层。钽基涂层的机械性能与其微观结构特征显著相关;除显微硬度外,涂层晶粒尺寸、点阵畸变及表面Ta2O5含量的相对值可用作质量控制的重要指标。

关键词 钽基涂层纳米晶等离子喷涂Ta2O5晶粒尺寸磨损率    
Abstract

In the fields of aviation, aerospace, and military, Ta-based coatings are of wide prospects in applications owing to their remarkable characteristics. Compared with other preparation methods, plasma spraying has obvious technical advantages in preparing Ta-based coatings. In this work, Ta2O5 in situ composite nanocrystalline Ta-based coatings via plasma spraying were fabricated. Effects of the spraying power, main gas (Ar) flow rate, and spraying mode on the fine surface microstructure and friction, as well as on the wear properties of Ta-based coatings, were investigated using several techniques. Such techniques included SEM, micro-beam XRD, fretting friction and wear test, and computational analysis. Moreover, related rules and causes were discussed. Results indicated that the Ta2O5 content at the surface of Ta-based coatings initially decreased and then increased with an increase in the spraying power. Conversely, the crystal size and lattice distortion of α-Ta at the coating surface initially increased and then decreased. With an increase in the Ar flow rate, the Ta2O5 content decreased in general and reached the lowest value when the flow rate was 2.17×10-3-2.33×10-3 m3/s. A negative correlation between the variation of the crystal size and lattice distortion with Ar flow rate has been observed. The Ta2O5 content, crystal size, and lattice distortion slightly decreased due to intermittent spraying. Moreover, a significant correlation between the Ta2O5 content and coating microhardness was observed. Under dry friction, the wear rate is closely related to both the oxide content and crystal size. Low oxide content and large crystal size results in high wear rate. Under boundary lubrication, coatings with higher levels of hardness exhibit better anti-wear and friction-reducing performance in the same series of Ta-based coatings. The coating exhibiting the best tribological properties can be achieved via intermittent spraying. Mechanical properties of Ta-based coating are significantly correlated with their fine microstructure characteristics. Aside from microhardness, the grain size, lattice distortion, and oxide content of the coatings can be utilized as important indexes to control the coating quality.

Key wordsTa-based coating    nanocrystal    plasma spraying    Ta2O5    crystal size    wear rate
收稿日期: 2020-07-22     
ZTFLH:  TG178  
基金资助:装备预先研究项目(培育项目)(0711)
作者简介: 李晓倩,女,1996年生,硕士生

Coating

Spraying

current

A

Spraying

voltage

V

Spraying

power

kW

Ar flow rate

10-3 m3·s-1

Spraying

time

Spraying

mode

No.136016358.681.95-2.124C
No.238016361.941.884C
No.340016164.401.884C
No.4420158-16166.991.884C
No.542016167.622.17-2.334C
No.642016368.462.55-2.624C
No.742016167.621.92-1.956I
表1  钽基涂层等离子喷涂的主要工艺参数
图1  金属Ta粉末的SEM像、EDS和XRD谱
图2  钽基涂层的XRD谱
图3  No.1~No.7钽基涂层表面形貌的SEM像
图4  No.1~No.7钽基涂层的表面粗糙度
图5  钽基涂层表面的微束XRD谱和各涂层的ITa2O5(001)/ITa(110)
CoatingITa2O5(001)/ITa(110)ITa2O5(001)/ITa(200)ITa2O5(001)/ITa(211)ITa2O5(110)/ITa(110)ITa2O5(110)/ITa(200)ITa2O5(110)/ITa(211)
No.10.0440.4160.1560.0530.5000.188
No.20.0360.2860.1140.0450.3570.143
No.30.0310.3080.1110.0310.3080.111
No.40.0470.4170.1520.0660.5830.212
No.50.0350.0350.1140.0530.4620.176
No.60.0360.0360.1180.0540.4620.176
No.70.0350.0350.1180.0450.3850.147
表2  No.1~No.7钽基涂层表面2种物相XRD峰的强度比
图6  钽基涂层表面α-Ta的晶粒尺寸与点阵畸变随喷涂功率的变化和喷涂功率改变时晶粒尺寸与点阵畸变的正相关性,以及二者随Ar气流量和喷涂方式的变化
图7  钽基涂层的平均显微硬度柱状图及涂层平均显微硬度与表面Ta2O5含量随喷涂功率、Ar气流量和喷涂方式的变化
图8  干摩擦及石蜡润滑条件下No.1~No.7钽基涂层摩擦系数随时间变化曲线
Coatingμ1μ2
No.11.05010.1941
No.20.95320.2147
No.30.98370.1944
No.41.07930.1993
No.51.03530.1881
No.60.95190.2041
No.70.59290.1811
表3  No.1~No.7钽基涂层的平均摩擦系数
图9  在干摩擦及石蜡润滑条件下钽基涂层磨损率随喷涂工艺的变化
1 Peng X M, Xia C Q, Zhou L, et al. Study of arc ion plated Ta-W coating on a titanium alloy [J]. Surf. Coat. Technol., 2018, 349: 622
2 Guo X T, Niu Y S, Chen M H, et al. Stoichiometry and tribological behavior of thick Ta(N) coatings produced by direct current magnetron sputtering (DCMS) [J]. Appl. Surf. Sci., 2018, 427: 1071
3 Koivuluoto H, Näkki J, Vuoristo P. Corrosion properties of cold-sprayed tantalum coatings [J]. J. Therm. Spray Technol., 2009, 18: 75
4 Xu J, Bao X K, Jiang S Y. In vitro corrosion resistance of Ta2N nanocrystalline coating in simulated body fluids [J]. Acta Metall. Sin., 2018, 54: 443
4 徐 江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究 [J]. 金属学报, 2018, 54: 443
5 Lee S L, Windover D, Audino M, et al. High-rate sputter deposited tantalum coating on steel for wear and erosion mitigation [J]. Surf. Coat. Technol., 2002, 149: 62
6 Buckman R W. New applications for tantalum and tantalum alloys [J]. JOM, 2000, 52(3): 40
7 Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties [J]. Acta Biomater., 2010, 6: 3349
8 Liang A M, Ni L W, Liu Q, et al. Structure characterization and tribological properties of thick chromium coating electrodeposited from a Cr(III) electrolyte [J]. Surf. Coat. Technol., 2013, 218: 23
9 Jiang A Q, Tyson T A, Axe L, et al. The structure of small Ta clusters [J]. J. Phys.: Condens. Matter, 2005, 17: 6111
10 Myers S, Lin J L, Souza R M, et al. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering [J]. Surf. Coat. Technol., 2013, 214: 38
11 Lee S L, Doxbeck M, Mueller J, et al. Texture, structure and phase transformation in sputter beta tantalum coating [J]. Surf. Coat. Technol., 2004, 177-178: 44
12 Yang S S, Yang F, Chen M H, et al. Effect of nitrogen doping on microstructure and wear resistance of tantalum coatings deposited by direct current magnetron sputtering [J]. Acta Metall. Sin., 2019, 55: 308
12 杨莎莎, 杨 峰, 陈明辉等. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响 [J]. 金属学报, 2019, 55: 308
13 Ali M, Ürgen M. Tantalum carbide-graphite composite film synthesized by hot-filament chemical vapor deposition [J]. Pure Appl. Chem., 2012, 84: 2499
14 Zhang H, Xie H, Yue T M. Laser cladding synthesis of Ta2O5 coatings on a Ta substrate [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 230: 012032
15 Kuo T Y, Chin W H, Chien C S, et al. Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying [J]. Surf. Coat. Technol., 2019, 372: 399
16 Hashemi S M, Parvin N, Valefi Z, et al. Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings [J]. Ceram. Int., 2019, 45: 21108
17 Herrmann M, Toma F L, Berger L M, et al. Comparative study of the corrosion resistance of thermally sprayed ceramic coatings and their bulk ceramic counterparts [J]. J. Eur. Ceram. Soc., 2014, 34: 493
18 Zhao L D, Maurer M, Lugscheider E. Thermal spraying of a nitrogen alloyed austenitic steel [J]. Thin Solid Films, 2003, 424: 213
19 Sahab A R M, Saad N H, Kasolang S, et al. Impact of plasma spray variables parameters on mechanical and wear behaviour of plasma sprayed Al2O3 3%wt TiO2 coating in abrasion and erosion application [J]. Procedia Eng., 2012, 41: 1689
20 Djendel M, Allaoui O, Boubaaya R. Characterization of Alumina-Titania coatings produced by atmospheric plasma spraying on 304SS steel [J]. Acta Phys. Pol., 2017, 132A: 538
21 He J L. The development of world tantalum powder technology [J]. Eng. Sci., 2001, 3(12): 85
21 何季麟. 世界钽粉生产工艺的发展 [J]. 中国工程科学, 2001, 3(12): 85
22 Dong T S, Zheng X D, Li G L, et al. Microstructure and mechanical properties of atmospheric-plasma-sprayed and TIG-remelted Fe-based coating [J]. Mater. Rep., 2019, 33: 678
22 董天顺, 郑晓东, 李国禄等. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能 [J]. 材料导报, 2019, 33: 678
23 Goberman D, Sohn Y H, Shaw L, et al. Microstructure development of Al2O3-13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders [J]. Acta Mater., 2002, 50: 1141
24 Liu J L, Zhang Q C, Lin J H. Simultaneous determination of mean particle size and ctystal lattice distortion of nanometer particles [J]. Adv. Ceram., 2002, 23(1): 34
24 刘建路, 张其春, 林金辉. 纳米粒子的平均晶粒尺寸和晶格畸变的同时测定 [J]. 现代技术陶瓷, 2002, 23(1): 34
25 Sun W H, Cui C, Zhang H H, et al. Relationship between crystalline size and lattice distortion of MgO and its activity [J]. J. Wuhan Univ. Technol., 1991, 13(4): 21
25 孙文华, 崔 崇, 张宏华等. MgO的晶粒大小和晶格畸变与水化活性的关系 [J]. 武汉工业大学学报, 1991, 13(4): 21
26 Huang S T. Solid X Radiography-One [M]. Beijing: Higher Education Press, 1985: 321
26 黄胜涛. 固体X射线学-1 [M]. 北京: 高等教育出版社, 1985: 321
27 Jiang C, Shen B L, Bai B, et al. Effect of plasma spraying parameters on sliding friction and wear behavior of tantalum coating [J]. Mater. Prot., 2010, 43(9): 28
27 蒋 驰, 沈保罗, 白 彬等. 等离子喷涂工艺参数对钽涂层滑动摩擦性能的影响 [J]. 材料保护, 2010, 43(9): 28
28 Leigh S H, Lin C K, Berndt C C. Elastic response of thermal spray deposits under indentation tests [J]. J. Am. Ceram. Soc., 1997, 80: 2093
29 Li J F, Huang J Q, Ji H, et al. Process optimization of microhardness of plasma sprayed Cr2O3 coating [J]. J. Chin. Ceram. Soc., 2001, 29: 49
29 李剑锋, 黄静琪, 季 珩等. 等离子喷涂Cr2O3涂层显微硬度的工艺优化 [J]. 硅酸盐学报, 2001, 29: 49
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[6] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[7] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[8] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[9] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[10] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[11] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[12] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[13] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[14] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[15] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.