Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1605-1616    DOI: 10.11900/0412.1961.2020.00119
  本期目录 | 过刊浏览 |
卷取温度对500 MPa级热冲压桥壳用钢组织与力学性能的影响
惠亚军1,2(), 刘锟1, 吴科敏3, 李秋寒1, 牛涛4, 武巧玲4
1 首钢集团有限公司技术研究院薄板研究所 北京 100043
2 首钢集团有限公司绿色可循环钢铁流程北京市重点实验室 北京 100043
3 北京首钢股份有限公司制造部 唐山 064404
4 首钢集团有限公司迁顺技术中心 唐山 064404
Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel
HUI Yajun1,2(), LIU Kun1, WU Kemin3, LI Qiuhan1, NIU Tao4, WU Qiaoling4
1 Sheet Metal Research Institute, Technology Institute of Shougang Group Co., Ltd., Beijing 100043, China
2 Beijing Key Laboratory of Green Recyclable Process for Iron & Steel Production of Shougang Group Co., Ltd., Beijing 100043, China
3 Manufacturing Department of Beijing Shougang Co., Ltd., Tangshan 064404, China
4 Qian Shun Technology Center of Shougang Group Co., Ltd., Tangshan 064404, China
引用本文:

惠亚军, 刘锟, 吴科敏, 李秋寒, 牛涛, 武巧玲. 卷取温度对500 MPa级热冲压桥壳用钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1605-1616.
Yajun HUI, Kun LIU, Kemin WU, Qiuhan LI, Tao NIU, Qiaoling WU. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel[J]. Acta Metall Sin, 2020, 56(12): 1605-1616.

全文: PDF(5847 KB)   HTML
摘要: 

采用OM、SEM和TEM等研究了卷取温度对500 MPa级热冲压桥壳用钢的组织与性能的影响规律。结果表明,热冲压桥壳用钢在600和570 ℃卷取时的力学性能有显著差异,570 ℃卷取时的屈服强度和抗拉强度分别达到538和641 MPa,较600 ℃卷取时分别提高了165和117 MPa,而其20~-40 ℃的系列温度冲击功均低于600 ℃,尤其是-40 ℃及以下低温韧性明显恶化,这与热冲压桥壳用钢在不同卷取温度下的显微组织和析出物的差异有关。600 ℃卷取时的组织由铁素体和珠光体组成,铁素体晶粒平均尺寸为4.48 μm,大角度晶界体积分数为68.1%,析出物平均尺寸为8.4 nm,其中10 nm以下的纳米级析出物体积分数约为70%;当卷取温度降低至570 ℃时,其组织主要由针状铁素体、粒状贝氏体、多边形铁素体/准多边形铁素体和珠光体组成,铁素体晶粒平均尺寸为4.39 μm,大角度晶界体积分数约为54.5%,析出物的平均尺寸为6.4 nm,其中10 nm以下的纳米级析出物体积分数高达86%;这种差异主要是由于热冲压桥壳用钢的贝氏体转变温度高达580 ℃,以及570 ℃卷取时的形核率与形核速率均大于600 ℃所致。因此,考虑到热冲压桥壳对板形质量要求较高,以及热冲压工艺对热轧原料组织和析出物的影响,热冲压桥壳用钢的卷取温度为600 ℃更合适。

关键词 卷取温度500 MPa级热冲压桥壳用钢显微组织析出物    
Abstract

With the rapid development of the Chinese axle industry and the increasing demand for lightweight axle housings, the demand for a new type of hot stamping axle housing steel, which can ensure the yield strength meets the requirements after the hot stamping process, is becoming increasingly urgent. However, there are no published reports on the development of this new type of hot stamping axle housing steel. The aim of this study was to develop 500 MPa grade hot stamping axle housing steel. The effect of coiling temperature on the microstructure, precipitates, and mechanical properties of the 500 MPa hot stamping axle housing steel were studied by OM, SEM, and TEM. The results showed that the mechanical properties of the tested steel were significantly different when coiling at 600 and 570 ℃. When coiling at 570 ℃, the yield strength and tensile strength reached 538 MPa and 641 MPa, respectively, which were 165 MPa and 117 MPa higher than those at 600 ℃, whereas, the impact energy in the range of 20~-40 ℃ was lower than that at 600 ℃, especially low-temperature toughness. These are related to the differences in the microstructure and precipitates in test steel when coiling at different temperatures, especially the difference in the proportion of the high angle grain boundary (HAGB). The microstructure of the tested steel was composed of ferrite and pearlite when coiling at 600 ℃, average grain size of ferrite was 4.48 μm, proportion of HAGB was 68.1%, and average size of the precipitates was 8.4 nm, of which nanoscale precipitates with sizes below 10 nm accounted for approximately 70%. The microstructure was mainly composed of acicular ferrite, granular bainite, polygonal ferrite/quasi polygonal ferrite, and pearlite when the coiling temperature was reduced to 570 ℃, the average size of ferrite was 4.39 μm, ratio of HAGB was approximately 54.5%, average size of the precipitates was 6.4 nm, and nanoscale precipitates with a size below 10 nm accounted for 86%. The difference in the microstructure and the precipitates was mainly owing to the fact the bainite transformation temperature of the test steel was as high as 580 ℃, and nucleation rate and nucleation speed of the test steel was higher when coiling at 570 ℃ than that at 600 ℃. Thus, considering the high requirements on the shape quality, effect of the hot stamping process on the microstructure, and precipitates of the tested steel, the coiling temperatureof the test steel is more suitable at 600 ℃.

Key wordscoiling temperature    500 MPa grade    hot stamping axle housing steel    microstructure    precipitate
收稿日期: 2020-04-16     
ZTFLH:  TG142.1  
作者简介: 惠亚军,男,1988年生,硕士
Tc / ℃σs / MPaσb / MPaδ / %Yield ratio
60037352430.50.71
57053864125.00.84
表1  500 MPa级热冲压桥壳用钢的力学性能

Tc

Ti

AkV / J
123Average
60020253258246252
-20227242218229
-40161217177185
-60160138136145
57020184182174180
-20147147150148
-4088596771
-6052424447
表2  500 MPa级热冲压桥壳用钢在不同冲击温度下的冲击功
图1  500 MPa级热冲压桥壳用钢在不同卷取温度下的OM像
图2  500 MPa级热冲压桥壳用钢在600 ℃卷取时的EBSD结果(a) inverse pole figure (IPF)(b) distribution of high and low angle grain boundaries (The red and black lines represent low and high angle boundaries with the misorientations between 2° and 15°, and more than 15°, respectively, the same below)(c) distribution of grain size(d) distribution of grain orientation
图3  500 MPa级热冲压桥壳用钢在570 ℃卷取时的EBSD结果(a) IPF (b) distribution of high and low angle grain boundaries(c) distribution of grain size (d) distribution of grain orientation
图4  500 MPa级热冲压桥壳用钢析出物分布的TEM像
图5  500 MPa级热冲压桥壳用钢中析出物的TEM像和EDS分析
图6  500 MPa级热冲压桥壳用钢的连续冷却转变(CCT)曲线
图7  500 MPa级热冲压桥壳用钢在不同冷却速率下的微观组织
图8  500 MPa级热冲压桥壳用钢在不同温度下V、C和N元素平衡固溶量的变化规律
图9  500 MPa级热冲压桥壳用钢在铁素体(F)区的形核率-温度(NrT)曲线和析出-温度-时间(PTT)曲线
[1] Liu W X. Automotive Design [M]. Beijing: Tsinghua University Press, 2001: 67
[1] (刘惟信. 汽车设计 [M]. 北京: 清华大学出版社, 2001: 67)
[2] Klein B, translated by Chen L H. Leichtbau-Konstruktion [M]. Beijing: Mechanical Industry Press, 2010: 198
[2] (Klein B著, 陈力禾, 译. 轻量化设计: 计算基础与构件结构 [M]. 北京: 机械工业出版社, 2010: 198)
[3] Liu W X. Automotive Axle Design [M]. Beijing: Tsinghua University Press, 2004: 330
[3] (刘惟信. 汽车车桥设计 [M]. 北京: 清华大学出版社, 2004: 330)
[4] Wang X. The method study based on the structure intensity analysis of the truck's drive axle [D]. Chongqing: Chongqing Jiaotong University, 2008
[4] (王 星. 货车驱动桥壳结构强度分析方法研究 [D]. 重庆: 重庆交通大学, 2008)
[5] Chen J R. Automobile Structure (Part 2) [M]. 3rd Ed., Beijing: Mechanical Industry Press, 2009: 154
[5] (陈家瑞. 汽车构造(下册) [M]. 第3版,北京: 机械工业出版社, 2009: 154)
[6] Cheng L J, Zhao G Q, Zhao X H, et al. FEM simulation of forging process for the design of a rear axle bracket [J]. J. Plast. Eng., 2008, 15(1): 14
[6] (程联军, 赵国群, 赵新海等. 有限元模拟在后轴支架锻造设计中的应用 [J]. 塑性工程学报, 2008, 15(1): 14)
[7] Wu S Q, Shi Z Y. Identification of vehicle axle loads based on FEM-Wavelet-Galerkin method [J]. J. Vib. Eng., 2006, 19: 494
[7] (吴邵庆, 史治宇. 由有限元-Wavelet-Galerkin法识别桥面移动载荷 [J]. 振动工程学报, 2006, 19: 494)
[8] Li Y X, Lin Z Q, Jiang A Q, et al. Use of high strength steel sheet for lightweight and crashworthy car body [J]. Mater. Des., 2003, 24: 177
doi: 10.1016/S0261-3069(03)00021-9
[9] Li X L, Ouyang K J, Zhang Y, et al. Development and research of steel used in axle housing for 3-ton light-duty truck [J]. Automob. Sci. Technol., 2000, (3): 25
[9] (李性林, 欧阳可居, 张 宇等. 三吨轻型车桥壳用钢的开发与应用研究 [J]. 汽车科技, 2000, (3): 25)
[10] Chu Y Z, Qi P, Di L H. Development of hot-rolled drawn axle-housing steel [J]. J. Univ. Sci. Technol., 1999, 21: 342
[10] (初元璋, 祁 鹏, 狄丽华. 热轧冲压桥壳用钢板的研制开发 [J]. 北京科技大学学报, 1999, 21: 342)
[11] Liu D S, Song D, Wang G D, et al. Development of microalloyed automotive steel strip [J]. Iron Steel, 2000, 35(2): 41
[11] (刘东升, 宋 丹, 王国栋等. 汽车桥壳用热连轧微合金高强钢板的研究 [J]. 钢铁, 2000, 35(2): 41)
[12] Wu J H, Ye X Y, Huang X J, et al. Research on hot-rolled and high-strength steel of 490 MPa automobile axle housings [J]. Sci. Technol. Liuzhou Steel, 2009, (suppl.): 57
[12] (吴菊环, 叶晓喻, 黄徐晶等. 490 MPa级汽车桥壳用热轧高强钢板研制 [J]. 柳钢科技, 2009, (增刊): 57)
[13] Wang S S, Cao K C, Hao X Q, et al. Process research on DQK415 steel plate for automobile axle housings [J]. Wide Heavy Plate, 2010, 16(6): 19
[13] (王绍松, 曹开宸, 郝小强等. 汽车桥壳用DQK415钢板的工艺研究 [J]. 宽厚板, 2010, 16(6): 19)
[14] Huang H H, Yao J Y, Liu R J, et al. Damage detection of axle housing based on metal magnetic memory testing technology [J]. J. Electron. Meas. Instrum., 2014, 28: 770
[14] (黄海鸿, 姚结艳, 刘儒军等. 基于金属磁记忆技术的车桥桥壳损伤检测 [J]. 电子测量与仪器学报, 2014, 28: 770)
[15] Topac M M, Günal H, Kuralay N S. Fatigue failure prediction of a rear axle housing prototype by using finite element analysis [J]. Eng. Fail. Anal., 2009, 16: 1474
doi: 10.1016/j.engfailanal.2008.09.016
[16] Fujiwara K, Okaguchi S, Ohtani H. Effect of hot deformation on bainite structure in low carbon steels [J]. ISIJ Int., 1995, 35: 1006.
doi: 10.2355/isijinternational.35.1006
[17] Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 175
[17] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 175)
[18] Duan H, Shan Y Y, Yang K, et al. Experimental on process, microstructure and mechanical properties of X80 high strength pipeline steel for low temperature [J]. Iron Steel, 2020, 55(2): 103
[18] (段 贺, 单以银, 杨 柯等. X80低温用高强度管线钢的工艺与组织性能试验 [J]. 钢铁, 2020, 55(2): 103)
[19] Hui Y J, Wu K M, Xu K H, et al. Development of 500 MPa grade high ductility square tube steel and its work hardening behavior [J]. Iron Steel, 2020, 55(2): 131
[19] (惠亚军, 吴科敏, 许克好等. 500 MPa级高延性方管用钢的开发及加工硬化行为 [J]. 钢铁, 2020, 55(2): 131)
[20] Hui Y J, Pan H, Zhou N, et al. Study on strengthening mechanism of 650 MPa grade V-N microalloyed automobile beam steel [J]. Acta Metall. Sin., 2015, 51: 1481
doi: 10.11900/0412.1961.2015.00082
[20] (惠亚军, 潘 辉, 周 娜等. 650 MPa级V-N微合金化汽车大梁钢强化机制研究 [J]. 金属学报, 2015, 51: 1481)
doi: 10.11900/0412.1961.2015.00082
[21] Yong Q L, Ma M T, Wu B R. Microalloyed Steel—Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 57
[21] (雍岐龙, 马鸣图, 吴宝榕. 微合金钢——物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 57)
[22] Zhang P C, Wu H B, Tang D, et al. Dissolving behaviors of carbonitrides in Nb-V-Ti and V-Ti microalloying steels [J]. Acta Metall. Sin., 2007, 43: 753
[22] (张鹏程, 武会宾, 唐 荻等. Nb-V-Ti和V-Ti微合金钢中碳氮化物的回溶行为 [J]. 金属学报, 2007, 43: 753)
[23] Wang P W, Zhao X H, Du C Z, et al. Analysis of high temperature mechanical properties of vanadium microalloyed steel [J]. Steel Rolling, 2020, 37(1): 45
[23] (王培文, 赵新华, 杜传治等. 钒微合金钢的高温力学性能分析 [J]. 轧钢, 2020, 37(1): 45)
[24] Chen Z Y, Chen Z G, Qin X Y. Influence of cooling speed on microstructure of Nb-V microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2010, 31(3): 59
[24] (陈振业, 陈子刚, 秦秀英. 冷却速度对Nb-V微合金化高强度钢显微组织的影响 [J]. 钢铁钒钛, 2010, 31(3): 59)
[25] Gao F, Qian T C, Wang R Z. Phase transformation characteristics of vanadium microalloying low carbon bainitic steel in continuous cooling process [J]. J. Iron Steel Res., 2011, 23(12): 40
[25] (高 飞, 钱天才, 王瑞珍. 钒微合金化低碳贝氏体钢的连续冷却相变特性 [J]. 钢铁研究学报, 2011, 23(12): 40)
[26] Brownrigg A, Prior G K. Hardenability reduction in VN microalloyed eutectoid steels [J]. Scr. Mater., 2002, 46: 357
doi: 10.1016/S1359-6462(01)01251-9
[27] Liu H H, Fu P X, Liu H W, et al. Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel [J]. J. Mater. Sci. Technol., 2019, 35: 2526
doi: 10.1016/j.jmst.2019.04.033
[28] Gwon H, Kim J K, Shin S, et al. The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel [J]. Mater. Sci. Eng., 2017, A696: 416
[29] Li Y, Milbourn D, Baker T. Effect of vanadium microalloying on the HAZ microstructure and properties of low carbon steels [J]. J. Iron Steel Res. Int., 2011, 18(suppl.): 393
[30] Ishikawa F, Takahashi T, Ochi T. Intragranular ferrite nucleation in medium-carbon vanadium steels [J]. Metall. Mater. Trans., 1994, 25A: 929
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[13] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[14] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.