Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1617-1628    DOI: 10.11900/0412.1961.2020.00114
  本期目录 | 过刊浏览 |
基于非对称双悬臂梁模型优化的双金属板界面结合强度研究
秦勤1,2(), 李程2, 何流1, 叶陈龙2, 臧勇1
1 北京科技大学机械工程学院 北京 100083
2 北京科技大学顺德研究生院 佛山 520300
An Investigation of Interface Bonding Strength of Bimetal Plate Based on the Optimization of Asymmetric Double Cantilever Beam Model
QIN Qin1,2(), LI Cheng2, HE Liu1, YE Chenlong2, ZANG Yong1
1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Shunde Graduate School, University of Science and Technology Beijing, Foshan 520300, China
引用本文:

秦勤, 李程, 何流, 叶陈龙, 臧勇. 基于非对称双悬臂梁模型优化的双金属板界面结合强度研究[J]. 金属学报, 2020, 56(12): 1617-1628.
Qin QIN, Cheng LI, Liu HE, Chenlong YE, Yong ZANG. An Investigation of Interface Bonding Strength of Bimetal Plate Based on the Optimization of Asymmetric Double Cantilever Beam Model[J]. Acta Metall Sin, 2020, 56(12): 1617-1628.

全文: PDF(2088 KB)   HTML
摘要: 

基于非对称双悬臂梁模型,在充分考虑金属复合材料界面的塑性变形行为的基础上,提出解析计算双金属板界面结合强度的改进方法,以解决金属界面结合强度高于基材强度时金属复合材料界面结合强度难以获得的难题。借助渐进成形实验验证了该方法的正确性,并获得爆炸复合的T2/A1050 Cu-Al复合板界面结合强度为208 MPa。界面结合强度与最大成形深度相关,当界面结合强度增加38%时,最大成形深度增加了210%。压下量和工具头直径严重影响鼓包高度,当压下量由2.0 mm降低至0.5 mm,鼓包高度降低57%;工具头直径由10 mm升高至22 mm,鼓包高度下降38%。最后,优选了合理的成形参数,使双金属复合板底面鼓包高度下降53%。

关键词 双金属板界面模型理论解析界面结合强度    
Abstract

The bimetal sheet products obtained by the incremental forming are gradually gaining popularity because of their excellent properties. The forming process of the bimetal sheets is more complicated than that of the single metal sheet because it involves a complex interface between the two metal sheets. The bonding strength of the interface is an important parameter for evaluating the bonding properties of a bimetal sheet. However, if the required bonding strength is higher than the strength of the substrate, appropriate strength is difficult to achieve using only experimental methods. An improved analytical method to calculate the interface bonding strength has been proposed based on the widely used interface model of an asymmetric double cantilever beam. This improved analytical method considers the plasticity of the interface. The interface bonding strength of the explosively welded T2/A1050 copper-aluminum bimetal sheet has been assessed using the improved method, and its interface bonding strength has been found to reach 208 MPa. This bonding strength has been used in a finite element model for the forming process of the bimetal sheet. The correctness of the method has been verified by comparing the analytical results with the experimental data. Furthermore, the influence of interface bonding strength on the maximum forming depth has been explored, and it has been found that the maximum forming depth increased by 210% when the interface bonding strength increased by 38%. Moreover, a three-dimensional model including a tool, the Cu-Al bimetal sheet, and a cohesive element between the two metal sheets has been suggested for investigating the bulge defect of the forming part. The bonding strength of the interface obtained above has again been utilized in the finite element analysis. The impacts of different reductions and tool diameters on the bulge defect of the forming part have systematically been discussed. The results show that bulge defect decreased by 57% when the reduction decreased from 2.0 mm to 0.5 mm, and the bulge defect decreased by 38% when the tool diameter increased from 10 mm to 22 mm. Optimized parameters have been suggested to effectively reduce the bulge defect by 53%.

Key wordsbimetal plate    interface model    theoretical analysis    interface bonding strength
收稿日期: 2020-04-10     
ZTFLH:  TH140.1  
基金资助:广东省基础与应用研究基金项目(2019B1515120070);北京科技大学顺德研究生院科技创新专项资金项目(BK-19BE009)
作者简介: 秦 勤,男,1970年生,教授,博士
图1  基于线性硬化假定的双线性弹塑性界面本构模型
图2  技术路线图
图3  双悬臂梁仿真模型Color online
图4  内聚力单元的双线性本构关系
Materialρ / (kg·m-3)E / GPaμσs / MPa
A10502700700.3398
T289401150.35290
表1  Cu-Al 双金属板物理性能参数[30]
F / MPaδ1 / mmδ2 / mm
1851.203521.10330
1901.134731.02560
1951.128900.91437
2001.103610.86254
2051.077930.84262
2100.792900.74218
2150.693020.70020
表2  双悬臂梁模型不同界面结合强度下的端部位移
图5  T型剥离模型变形前后的仿真云图比较Color online
tG / (mJ·mm-2)δ1 / mmδ2 / mm
H/6.279.432~10.2922.21181.5330
H/16.218.296~4.77311.50621.0439
H/309.639~3.70861.32770.9202
表3  拉伸方向处于弹性阶段,剪切方向处于塑性阶段下断裂能和端部位移的部分计算结果
图6  单点渐进成形仿真模拟Color online
图7  内聚力单元的损伤情况Color online
图8  复合板损伤模拟结果Color online
图9  单点渐进成形仿真结果与实验结果的对比Color online(a) simulated result (b) experimental result
图10  单点渐进成形实验和仿真轮廓曲线
图11  不同压下量下圆锥制件的截面轮廓和底部鼓包高度
图12  不同工具头直径下圆锥制件的截面轮廓和底部鼓包高度
[1] Zhang Y X, Yang C H. Recent developments in finite element analysis for laminated composite plates [J]. Compos. Struct., 2009, 88: 147
doi: 10.1016/j.compstruct.2008.02.014
[2] Chen X Z. Review of laminar composite metal material manufacturing technique [J]. Nonferrous Met. Mater. Eng., 2017, 38: 63
[2] (陈兴章. 层状金属复合材料技术创新及发展趋势综述 [J]. 有色金属材料与工程, 2017, 38: 63)
[3] Xiong J, Ma L, Pan S, et al. Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores [J]. Acta Mater., 2012, 60: 1455
doi: 10.1016/j.actamat.2011.11.028
[4] Lü Z Y. Research on interfacial bonding strength of asynchronous rolled copper/aluminum composite plate [J]. J. Plast. Eng., 2019, 26(4): 93
[4] (吕震宇. 异步轧制铜/铝复合板界面结合强度研究 [J]. 塑性工程学报, 2019, 26(4): 93)
[5] Zhou J J, Pang Y H, Su X L, et al. Development of manufacturing technology for layer-metal composite plate [J]. Mater. Rev., 2005, 19: 220
[5] (周俊杰, 庞玉华, 苏晓莉等. 金属层状复合技术的研究现状与发展 [J]. 材料导报, 2005, 19: 220)
[6] Qiu B, Xing S M, Dong Q. Characterization of interfacial bonding strength of particles reinforced metal matrix composites: Theory model, finite element simulation and experimental test [J]. Mater. Rev., 2019, 33: 862
[6] (邱 博, 邢书明, 董 琦. 颗粒增强金属基复合材料界面结合强度的表征: 理论模型、有限元模拟和实验测试 [J]. 材料导报, 2019, 33: 862)
[7] Muralidharan N, Chockalingam K, Dinaharan I, et al. Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles [J]. J. Alloys Compd., 2018, 735: 2167
[8] Kim Y K, Hong S I. Influence of interface structure and stress distribution on fracture and mechanical performance of STS439/Al1050/STS304 clad composite [J]. Mater. Sci. Eng., 2019, A749: 35
[9] Abbasi M, Salehi M T, Taheri A K. An investigation on cold roll welding of copper to aluminum using electrical resistivity [J]. Z. Metallkd., 2001, 92: 423
[10] Wang T H, Sidhar H, Mishra R S, et al. Evaluation of intermetallic compound layer at aluminum/steel interface joined by friction stir scribe technology [J]. Mater. Des., 2019, 174: 107795
doi: 10.1016/j.matdes.2019.107795
[11] Zhang Z L. Theoretical and experimental study on the Iosipescu shear test method [J]. J. Aeronaut. Mater., 1996, 16(1): 55
[11] (张子龙. 复合材料面内剪切Iosipescue方法分析及试验研究 [J]. 航空材料学报, 1996, 16(1): 55)
[12] You J H, Lutz W, Gerger H, et al. Fiber push-out study of a copper matrix composite with an engineered interface: Experiments and cohesive element simulation [J]. Int. J. Solids Struct., 2009, 46: 4277
doi: 10.1016/j.ijsolstr.2009.08.021
[13] Nishikawa M, Okabe T, Takeda N. Determination of interface properties from experiments on the fragmentation process in single-fiber composites [J]. Mater. Sci. Eng., 2008, A480: 549
[14] Nishikawa M, Okabe T, Hemmi K, et al. Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites [J]. Int. J. Solids Struct., 2008, 45: 4098
doi: 10.1016/j.ijsolstr.2008.02.021
[15] Ni L H. Interface and performance analysis of explosively welded Cu-Al bimetallic composite [D]. Zhenjiang: Jiangsu University of Science and Technology, 2015
[15] (倪梁华. 铜铝爆炸复合材料界面及性能分析 [D]. 镇江: 江苏科技大学, 2015)
[16] Qu H P. Study on semi-analytical solution for thermoelastic composite laminated plate [D]. Tianjin: Civil Aviation University of China, 2018
[16] (屈鹤鹏. 复合材料层合板热弹性问题半解析法研究 [D]. 天津: 中国民航大学, 2018)
[17] Dvorak G J, Laws N. Analysis of progressive matrix cracking in composite laminates II. First ply failure [J]. J. Compos. Mater., 1987, 21: 309
doi: 10.1177/002199838702100402
[18] Dvorak G J, Laws N, Hejazi M. Analysis of progressive matrix cracking in composite laminates I. Tthermoelastic properties of a ply with cracks [J]. J. Compos. Mater., 1985, 19: 216
doi: 10.1177/002199838501900302
[19] Reedy E D, Guess T R. Butt joint tensile strength: Interface corner stress intensity factor prediction [J]. J. Adhes. Sci. Technol., 1995, 9: 237
doi: 10.1163/156856195X01148
[20] Adams R. Structural Adhesive Joints in Engineering [M]. Netherlands: Springer, 1984: 1
[21] Dunn M L, Suwito W, Cunningham S. Fracture initiation at sharp notches: Correlation using critical stress intensities [J]. Int. J. Solids Struct., 1997, 34: 3873
doi: 10.1016/S0020-7683(96)00236-3
[22] Maimí P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates: Part I—Constitutive model [J]. Mech. Mater., 2007, 39: 897
doi: 10.1016/j.mechmat.2007.03.005
[23] Maimí P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates: Part II—Computational implementation and validation [J]. Mech. Mater., 2007, 39: 909
doi: 10.1016/j.mechmat.2007.03.006
[24] Xiao F, Hui C Y, Kramer E J. Analysis of a mixed mode fracture specimen: The asymmetric double cantilever beam [J]. J. Mater. Sci., 1993, 28: 5620
doi: 10.1007/BF00367838
[25] Bennati S, Fisicaro P, Valvo P S. An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part I: Literature review and mechanical model [J]. Meccanica, 2013, 48: 443
doi: 10.1007/s11012-012-9686-3
[26] Bennati S, Fisicaro P, Valvo P S. An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part II: Applications and results [J]. Meccanica, 2013, 48: 465
doi: 10.1007/s11012-012-9682-7
[27] Bennati S, Colleluori M, Corigliano D, et al. An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates [J]. Compos. Sci. Technol., 2009, 69: 1735
doi: 10.1016/j.compscitech.2009.01.019
[28] Hua X G, Li H G, Lu Y, et al. Interlaminar fracture toughness of GLARE laminates based on asymmetric double cantilever beam (ADCB) [J]. Composites, 2019, 163B: 175
[29] Williams J G. Fracture mechanics of anisotropic materials [J]. Compos. Mater. Ser., 1989, 6: 3
[30] Honarpisheh M, Jobedar M M, Alinaghian I. Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 3069
doi: 10.1007/s00170-018-1812-5
[31] Bennati S, Valvo P S. Delamination growth in composite plates under compressive fatigue loads [J]. Compos. Sci. Technol., 2006, 66: 248
doi: 10.1016/j.compscitech.2005.04.035
[32] Li X Q. Diffusion thickness and heat transfer performance of Cu-Al composite pate under service condions [D]. Shenyang: Shenyang University of Technology, 2019
[32] (李雪琪. 服役条件下铜铝复合板的扩散层厚度及传热性能 [D]. 沈阳: 沈阳工业大学, 2019)
[1] 李继展,付莹,接金川,赵佳蕾,Joonpyo Park,Jongho Kim,李廷举. 连续铸造法制备3003/4004铝合金复层圆铸坯[J]. 金属学报, 2013, 49(3): 297-302.
[2] 张文征 . O点阵模型及其在界面位错计算中的应用[J]. 金属学报, 2002, 38(8): 785-794 .
[3] 熊惟皓;胡镇华;崔崑. Ti(C,N)基金属陶瓷相界面层微晶结构的形成[J]. 金属学报, 1997, 33(5): 473-478.