|
|
基于非对称双悬臂梁模型优化的双金属板界面结合强度研究 |
秦勤1,2( ), 李程2, 何流1, 叶陈龙2, 臧勇1 |
1 北京科技大学机械工程学院 北京 100083 2 北京科技大学顺德研究生院 佛山 520300 |
|
An Investigation of Interface Bonding Strength of Bimetal Plate Based on the Optimization of Asymmetric Double Cantilever Beam Model |
QIN Qin1,2( ), LI Cheng2, HE Liu1, YE Chenlong2, ZANG Yong1 |
1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Shunde Graduate School, University of Science and Technology Beijing, Foshan 520300, China |
引用本文:
秦勤, 李程, 何流, 叶陈龙, 臧勇. 基于非对称双悬臂梁模型优化的双金属板界面结合强度研究[J]. 金属学报, 2020, 56(12): 1617-1628.
Qin QIN,
Cheng LI,
Liu HE,
Chenlong YE,
Yong ZANG.
An Investigation of Interface Bonding Strength of Bimetal Plate Based on the Optimization of Asymmetric Double Cantilever Beam Model[J]. Acta Metall Sin, 2020, 56(12): 1617-1628.
[1] |
Zhang Y X, Yang C H. Recent developments in finite element analysis for laminated composite plates [J]. Compos. Struct., 2009, 88: 147
doi: 10.1016/j.compstruct.2008.02.014
|
[2] |
Chen X Z. Review of laminar composite metal material manufacturing technique [J]. Nonferrous Met. Mater. Eng., 2017, 38: 63
|
[2] |
(陈兴章. 层状金属复合材料技术创新及发展趋势综述 [J]. 有色金属材料与工程, 2017, 38: 63)
|
[3] |
Xiong J, Ma L, Pan S, et al. Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores [J]. Acta Mater., 2012, 60: 1455
doi: 10.1016/j.actamat.2011.11.028
|
[4] |
Lü Z Y. Research on interfacial bonding strength of asynchronous rolled copper/aluminum composite plate [J]. J. Plast. Eng., 2019, 26(4): 93
|
[4] |
(吕震宇. 异步轧制铜/铝复合板界面结合强度研究 [J]. 塑性工程学报, 2019, 26(4): 93)
|
[5] |
Zhou J J, Pang Y H, Su X L, et al. Development of manufacturing technology for layer-metal composite plate [J]. Mater. Rev., 2005, 19: 220
|
[5] |
(周俊杰, 庞玉华, 苏晓莉等. 金属层状复合技术的研究现状与发展 [J]. 材料导报, 2005, 19: 220)
|
[6] |
Qiu B, Xing S M, Dong Q. Characterization of interfacial bonding strength of particles reinforced metal matrix composites: Theory model, finite element simulation and experimental test [J]. Mater. Rev., 2019, 33: 862
|
[6] |
(邱 博, 邢书明, 董 琦. 颗粒增强金属基复合材料界面结合强度的表征: 理论模型、有限元模拟和实验测试 [J]. 材料导报, 2019, 33: 862)
|
[7] |
Muralidharan N, Chockalingam K, Dinaharan I, et al. Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles [J]. J. Alloys Compd., 2018, 735: 2167
|
[8] |
Kim Y K, Hong S I. Influence of interface structure and stress distribution on fracture and mechanical performance of STS439/Al1050/STS304 clad composite [J]. Mater. Sci. Eng., 2019, A749: 35
|
[9] |
Abbasi M, Salehi M T, Taheri A K. An investigation on cold roll welding of copper to aluminum using electrical resistivity [J]. Z. Metallkd., 2001, 92: 423
|
[10] |
Wang T H, Sidhar H, Mishra R S, et al. Evaluation of intermetallic compound layer at aluminum/steel interface joined by friction stir scribe technology [J]. Mater. Des., 2019, 174: 107795
doi: 10.1016/j.matdes.2019.107795
|
[11] |
Zhang Z L. Theoretical and experimental study on the Iosipescu shear test method [J]. J. Aeronaut. Mater., 1996, 16(1): 55
|
[11] |
(张子龙. 复合材料面内剪切Iosipescue方法分析及试验研究 [J]. 航空材料学报, 1996, 16(1): 55)
|
[12] |
You J H, Lutz W, Gerger H, et al. Fiber push-out study of a copper matrix composite with an engineered interface: Experiments and cohesive element simulation [J]. Int. J. Solids Struct., 2009, 46: 4277
doi: 10.1016/j.ijsolstr.2009.08.021
|
[13] |
Nishikawa M, Okabe T, Takeda N. Determination of interface properties from experiments on the fragmentation process in single-fiber composites [J]. Mater. Sci. Eng., 2008, A480: 549
|
[14] |
Nishikawa M, Okabe T, Hemmi K, et al. Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites [J]. Int. J. Solids Struct., 2008, 45: 4098
doi: 10.1016/j.ijsolstr.2008.02.021
|
[15] |
Ni L H. Interface and performance analysis of explosively welded Cu-Al bimetallic composite [D]. Zhenjiang: Jiangsu University of Science and Technology, 2015
|
[15] |
(倪梁华. 铜铝爆炸复合材料界面及性能分析 [D]. 镇江: 江苏科技大学, 2015)
|
[16] |
Qu H P. Study on semi-analytical solution for thermoelastic composite laminated plate [D]. Tianjin: Civil Aviation University of China, 2018
|
[16] |
(屈鹤鹏. 复合材料层合板热弹性问题半解析法研究 [D]. 天津: 中国民航大学, 2018)
|
[17] |
Dvorak G J, Laws N. Analysis of progressive matrix cracking in composite laminates II. First ply failure [J]. J. Compos. Mater., 1987, 21: 309
doi: 10.1177/002199838702100402
|
[18] |
Dvorak G J, Laws N, Hejazi M. Analysis of progressive matrix cracking in composite laminates I. Tthermoelastic properties of a ply with cracks [J]. J. Compos. Mater., 1985, 19: 216
doi: 10.1177/002199838501900302
|
[19] |
Reedy E D, Guess T R. Butt joint tensile strength: Interface corner stress intensity factor prediction [J]. J. Adhes. Sci. Technol., 1995, 9: 237
doi: 10.1163/156856195X01148
|
[20] |
Adams R. Structural Adhesive Joints in Engineering [M]. Netherlands: Springer, 1984: 1
|
[21] |
Dunn M L, Suwito W, Cunningham S. Fracture initiation at sharp notches: Correlation using critical stress intensities [J]. Int. J. Solids Struct., 1997, 34: 3873
doi: 10.1016/S0020-7683(96)00236-3
|
[22] |
Maimí P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates: Part I—Constitutive model [J]. Mech. Mater., 2007, 39: 897
doi: 10.1016/j.mechmat.2007.03.005
|
[23] |
Maimí P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates: Part II—Computational implementation and validation [J]. Mech. Mater., 2007, 39: 909
doi: 10.1016/j.mechmat.2007.03.006
|
[24] |
Xiao F, Hui C Y, Kramer E J. Analysis of a mixed mode fracture specimen: The asymmetric double cantilever beam [J]. J. Mater. Sci., 1993, 28: 5620
doi: 10.1007/BF00367838
|
[25] |
Bennati S, Fisicaro P, Valvo P S. An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part I: Literature review and mechanical model [J]. Meccanica, 2013, 48: 443
doi: 10.1007/s11012-012-9686-3
|
[26] |
Bennati S, Fisicaro P, Valvo P S. An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part II: Applications and results [J]. Meccanica, 2013, 48: 465
doi: 10.1007/s11012-012-9682-7
|
[27] |
Bennati S, Colleluori M, Corigliano D, et al. An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates [J]. Compos. Sci. Technol., 2009, 69: 1735
doi: 10.1016/j.compscitech.2009.01.019
|
[28] |
Hua X G, Li H G, Lu Y, et al. Interlaminar fracture toughness of GLARE laminates based on asymmetric double cantilever beam (ADCB) [J]. Composites, 2019, 163B: 175
|
[29] |
Williams J G. Fracture mechanics of anisotropic materials [J]. Compos. Mater. Ser., 1989, 6: 3
|
[30] |
Honarpisheh M, Jobedar M M, Alinaghian I. Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 3069
doi: 10.1007/s00170-018-1812-5
|
[31] |
Bennati S, Valvo P S. Delamination growth in composite plates under compressive fatigue loads [J]. Compos. Sci. Technol., 2006, 66: 248
doi: 10.1016/j.compscitech.2005.04.035
|
[32] |
Li X Q. Diffusion thickness and heat transfer performance of Cu-Al composite pate under service condions [D]. Shenyang: Shenyang University of Technology, 2019
|
[32] |
(李雪琪. 服役条件下铜铝复合板的扩散层厚度及传热性能 [D]. 沈阳: 沈阳工业大学, 2019)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|