Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 558-582    DOI: 10.11900/0412.1961.2020.00058
  综述 本期目录 | 过刊浏览 |
钢的高性能化理论与技术进展
董瀚1,2(),廉心桐1,胡春东1,陆恒昌1,彭伟1,赵洪山1,徐德祥1
1.上海大学材料科学与工程学院 上海 200444
2.钢铁研究总院 北京 100081
High Performance Steels: the Scenario of Theoryand Technology
DONG Han1,2(),LIAN Xintong1,HU Chundong1,LU Hengchang1,PENG Wei1,ZHAO Hongshan1,XU Dexiang1
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(33453 KB)   HTML
摘要: 

高强度化始终是钢的发展主题,同时还需要解决高强度化后导致的韧塑性降低、疲劳破坏和延迟断裂敏感性增加等问题。在获得高的力学性能之后,实际应用时还需要材料具有良好的工艺适应性与服役性能,达到合适的材料生产-零件制造-服役评价的技术匹配。本文以耐候钢、合金结构钢、紧固件用钢、高氮奥氏体不锈钢、马氏体不锈钢为案例,回顾并展望了与耐腐蚀、高强度、高品质等相关的材料发展动向。近年来的实践充分证明了技术基础研究是创新的源泉,从全产业链流程的组织与性能调控进一步转向合金化的再认识与利用,可能是今后一段时间应该考虑的问题。

关键词 高性能理论技术    
Abstract

Strengthening and toughening are the main topics of steels, and accompanied fatigue failure and delayed fracture requiring to be solved simultaneously. Not just more than that, better performances in fabrication and service are quite important for an intentional steel to be used eventually. It is worth to pay close attention to match up three main courses: steel processing, component fabrication and service evaluation. Over past two decades, ferrite grains can be refined to micron scale in both plain low carbon steel products and microalloyed steel products and lead to remarkable increase of strength. The reason to define the limitation of ferrite grain refinement to microns is ductility decrease, low processing efficiency and heat affected zone (HAZ) coarsening. Ten years ago, a novel microstructure M3 (multiphase, metastable and multiscale) was proposed to overcome the problems stated above, and led to ductility and/or toughness improvement. It based on the idea of crack initiation and propagation retardment. It led to prevalence of the 3rd generation advanced high strength steel (AHSS) and the 3rd generation high strength low alloy (HSLA) steel, presenting higher ductility and/or toughness at high strength level. In the near future, it is imaginable that polymorphic alloying will be taken into consideration instead of recent hot issue on microstructure control during whole processing. From the view point of classic alloying theory, solution and precipitation of alloying elements play an important role on processing and then final microstructure. The distribution and occurrence of small atom radius elements (e.g. C and N) and comparable atom radius elements (e.g. Cr, Mn, Ni, Co) in iron seem quite clear. The ambiguous situation still remains for B and P, and even larger atom radius elements such as rare earth (RE) elements. Segregation of small amount of them to defects and boundaries maybe lead to decrease of energy and result in remarkable change of microstructure characterization. Thanks to the advancement in processing and instrumentation technologies, the distribution and occurrence of alloying elements in steel and the advantages of different alloying elements in steel matrix and surface can be taken, so called the polymorphic alloying. The practices of polymorphic alloying in steel development are engaged to improve corrosion resistance, strengthening and toughening. The performance enhancements are discussed in cases of weathering steel microalloyed with RE, ultrahigh strength steel strengthening by carbide and intermetallic precipitates, bolt steel with C and microalloying elements, austenitic stainless steel alloyed with N, and martensitic stainless steel alloyed with C and Ag.

Key wordssteel    high performance    theory    technology
收稿日期: 2020-02-21     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2017YFB0304401);国家重点研发计划项目(2017YFB-0304701);中国博士后科学基金项目(2019M651465);上海市教育委员会科研创新计划项目(2019-01-07-00-09-E00024)
通讯作者: 董瀚     E-mail: 13910077790@163.com
Corresponding author: Han DONG     E-mail: 13910077790@163.com
作者简介: 董 瀚,男,1962年生,教授

引用本文:

董瀚,廉心桐,胡春东,陆恒昌,彭伟,赵洪山,徐德祥. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582.
Han DONG, Xintong LIAN, Chundong HU, Hengchang LU, Wei PENG, Hongshan ZHAO, Dexiang XU. High Performance Steels: the Scenario of Theoryand Technology. Acta Metall Sin, 2020, 56(4): 558-582.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2020.00058      或      https://www.ams.org.cn/CN/Y2020/V56/I4/558

YearDevelopment
1900US started to develop Cu-bearing steels
1916ASTM started research of weathering steels
1933Cor-Ten steel was developed by US Steel
1941First standard for weathering steels (ASTM A-242) was proposed
1955Japan started to develop weathering steels
196509CuPTiRE sheet steel was developed by China
1965~1980Japan, Germany, Britain and other European countries began to use exposed weathering steels
1984China formulated national standard of high weathering steels

1990

First bridge using exposed weathering steels was built in China,

weathering steels was fully used in railway vehicle manufacture

1992

High performance steels (HPS) was developed by US Federal Highway Administration (FHWA) for

bridge building

1999High weathering steels for JT towers were developed in China
表1  20世纪耐候钢的发展历程
图1  耐候钢锈层转变示意图
图2  稀土元素在钢中赋存示意图
图3  添加稀土前后的Q235和09CuPCrNi钢周期浸润腐蚀144 h后的样品形貌及腐蚀速率
图4  09CuPCrNiRE钢中Ce元素的AES谱
图5  钢铁材料强度的发展
图6  合金结构钢强度和塑韧性[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]
Toughening mechanismToughening theoryToughening natureRef.
CleaningδIC~X0RVRI|R0Increase crack nucleation energy[42]
Refinement of precipitationKIC=nE2πλIncrease crack nucleation energy[43]
Refinement of microstructureσfc=2Gγksd-12Increase crack propagation energy[43]
Retained austeniteKId=-3Gb21-ν2πrsinθcos(θ2)Increase crack propagation energy[43]
表2  钢铁材料常见韧化机制[42,43]
图7  0.15C5Mn3Al钢中裂纹在马氏体和铁素体中扩展[45]
图8  耐延迟断裂性能和抗疲劳性能随强度的提高而降低
图9  30Cr3Mo2V和25Cr2MoV钢中的碳化物形貌
Type of trapTrapMaterialEaHeating rate
kJ·mol-1℃·min-1
Reversible hydrogen trapDislocationPure iron26.93
Grain boundaryPure iron17.23
F/Fe3C phase boundaryMedium carbon steel18.42.6
TiC (coherent)Low carbon steel46~591.7
NbC (coherent)Tempered martensite steel281.7
NbC (coherent)C080 low carbon steel39~483.33~20
MicrovoidPure iron35.23
Irreversible hydrogen trapGrain boundaryDeformed iron59.93
Retained austeniteDouble phase (DP) steel554
AlN-64-
NbC (incoherent)C080 low carbon steel63~683.33~20
TiC (incoherent)Medium carbon steel863
MnSLow alloy steel72.33
Fe3CMedium carbon steel844
TiC (incoherent)0.025C-0.09Ti138~1493.33~20
表3  钢中不同氢陷阱的结合能(Ea)[51,54]
图10  A286样品显微组织及A286样品与进口产品在650 ℃持久实验后的性能对比
Marterial codeDescriptionTmax / ℃
1.4534.4Precipitation-hardening stainless steel315
1.4534.5(13-8Mo, 0.04C-13Cr-8Ni-2.2Mo-1Al)
1.4534.6
1.4534.7Precipitation-hardening stainless steel850
1.4534.9(0.05C-18Cr-10Ni-0.4Ti)
1.4545.4Precipitation-hardening stainless steel300
1.4545.5(15-5PH, 0.05C-15Cr-5Ni-4Cu)
1.4548.4Austenitic stainless steel300
1.4548.5(17-4PH, 0.05C-16Cr-4Ni-4Cu)
1.4548.6
1.4939.5Tempered martensitic steel550
1.4939.6(0.10C-12Cr-1.8Mo-2.5Ni-0.3V)
1.4944.4Precipitation-hardening stainless steel725
1.4944.6(A286, 0.06-25Ni-15Cr-2.1Ti-1.2Mo)
1.7734.4Tempered martensitic steel500
1.7734.5(0.15C-1.4Cr-0.90Mo-0.25V)
1.7734.6
1.7784.5Tempered martensitic steel500
1.7784.6(0.4C-5Cr-1.3Mo-0.5V)
2.4631.7Precipitation hardened nickel alloy815
(Nimonic 80A, 0Cr-2.3Ti-1.4Al-0.1C)
2.4668.7Precipitation hardened nickel alloy700
2.4668.9(Inconel 718, 19Cr-18Fe-5Nb-3Mo-0.05C)
表4  航空航天用耐热紧固件用典型材料
CountryCodeCSiMnVNbCrOthers
ChinaMFT80.16~0.26≤0.301.20~1.60≤0.08≤0.10--
MFT90.18~0.26≤0.301.20~1.60≤0.08≤0.10--
MFT100.08~0.140.20~0.351.90~2.30≤0.10≤0.20--
JapanKNCH70.19~0.250.15~0.301.35~1.65----
(KOBELCO)KNCH7s0.19~0.25≤0.101.20~1.50----
KNCH80.27~0.330.15~0.301.35~1.65----
KNCH8s0.27~0.33≤0.101.35~1.65----
KNCH8P0.12~0.18≤0.101.35~1.65AdditionAddition--
KNCH9P0.19~0.25≤0.101.35~1.65Addition-0.20~0.40-
KNCH100.37~0.430.15~0.351.00~1.30Addition---
KNCH12P0.15~0.200.40~0.501.00~1.30Addition-1.20~1.40Ti, B, Mo
表5  我国与日本非调质钢主要成分对比 (mass fraction / %)
图11  关键紧固件强度统计分布情况
图12  ZT35K-M钢在线退火组织
图13  一些氮合金化奥氏体不锈钢固溶后的室温力学性能[64,65,66,67,68,69,70]
图14  冷轧和固溶处理05Cr21Mn16Ni2N钢的工程应力-应变曲线
图15  奥氏体不锈钢耐点蚀当量(PREN)随N含量的变化
图16  不同N含量高氮奥氏体不锈钢和钛合金细胞毒性检验结果
GroupIn general populationIn dermatitis patient
Adult8%~19%12%~25%
Adolescent and child8%~10%5%~30%
表6  人群对Ni过敏的比例统计
TimeTechnical innovation

1940s

1) heat treatment instrumentation: improve temperature controls and recorders

2) neutral atmosphere furnace: eliminate surface decarburization

3) large electric furnace melting: produce larger size billets+billets forging to refine the steel grain and carbide size and reduce the size of material's inclusions and segregates

1950s

1) immersion thermocouples: permit better control of steel melting

2) shoe grinding: improve race surface quality and tolerance

3) vacuum degassing and vacuum melting: alter the type of inclusions and trace element

1960s

1) ultrasonic and eddy current inspection: ensure product quality

2) elastohydrodynamic principles: improve lubrication

3) argon atmosphere: improve cleanliness and macro and micro structure unity

4) controlled fiber and hardiness: improve bearing life

1970svaccum-induction melted+vacuum-arc remelted (VIM+VAR)

1990s

1) powder metallurgy: Pyrowear 675 steel; plasma nitriding: nitrides M50 &M50NiL steel2) pressure electroslag remelting: Cronidur30 steel
表7  航发轴承钢的技术创新[89]
图17  6Cr16MoNiV钢和6Cr16MoVAgRE[93]钢夹杂物EDS
图18  不同高碳马氏体不锈钢的点蚀阻抗谱和腐蚀速率。
图19  6Cr16MoVAgRE钢EPMA分析
图20  6Cr16MoMA马氏体不锈钢SEM像和不同高碳马氏体不锈钢不同奥氏体化温度处理后试样冲击功
[1] Weng Y Q. Progress of theory and controlled technology of ultrafine grained steel [J]. Iron Steel, 2005, 40(3): 1
[1] 翁宇庆. 超细晶钢理论及技术进展 [J]. 钢铁, 2005, 40(3): 1
[2] Weng Y Q. Technological progress in service life prolonging of high strength steel [J]. Mater. China, 2009, 28(9-10): 51
[2] 翁宇庆. 提高高强度钢使用寿命的科技进展 [J]. 中国材料进展, 2009, 28(9-10): 51
[3] Dong H, Wang M Q, Weng Y Q. Performance improvement of steels through M3 structure control [J]. Iron Steel, 2010, 45(7): 1
[3] 董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术 [J]. 钢铁, 2010, 45(7): 1
[4] Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts [J]. Constr. Build. Mater., 2019, 213: 723
[5] Smith G. Steels fit for the countryside [J]. New Scientist, 1971: 211
[6] ASTM A242/A242M-04 Standard specification for high-strength low-alloy structural steel [S]. West Conshohocken, Philadelphia: American Society for Testing and Materials, 2004
[7] Wilson A D. Properties of recent production of A709 HPS-70W bridge steels [A]. International Symposium on Steel for Fabricated Structures [C]. Cincinnati, USA: ASM International, 1999: 41
[8] Zhang Q C, Wu J S. Current status of R&D work on weathering steel [J]. Mater. Rep., 2000, 14(7): 12
[8] 张全成, 吴建生. 耐侯钢的研究与发展现状 [J]. 材料导报, 2000, 14(7): 12
[9] Wang L M, Du T, Wang Y K. Mechanism of Ce in 09CuPTi(RE) corrosion-resisting steel [J]. J. Chin. Rare Earth Soc., 2003, 21: 491
[9] 王龙妹, 杜 挺, 王跃奎. 09CuPTi(RE)耐候钢中稀土作用机制研究 [J]. 中国稀土学报, 2003, 21: 491
[10] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
[11] Liu Z, Lian X T, Liu T S, et al. Effects of rare earth elements on corrosion behaviors of low-carbon steels and weathering steels [J]. Mater. Corros., 2020, 71: 258
[12] Yue L J, Wang L M, Han J S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel [J]. J. Rare Earth., 2010, 28: 952
[13] Kim S T, Jeon S H, Lee I S, et al. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel-Part 1 [J]. Corros. Sci., 2010, 52: 1897
[14] Grossmann M A. Hardenability calculated from chemical composition [J]. Trans. AIME, 1942, 150: 227
[15] Just E. New formulas for calculating hardenability curves [J]. Met. Progr., 1969, 96: 87
[16] Vermeulen W G, van der Wolk P J, de Weijer A P, et al. Prediction of Jominy hardness profiles of steels using artificial neural networks [J]. J. Mater. Eng. Perform., 1996, 5: 57
[17] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
[18] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[19] He Y, Yang K, Qu W S, et al. Strengthening and toughening of a 2800-MPa grade maraging steel [J]. Mater. Lett., 2002, 56: 763
[20] Kawabe Y, Muneki S, Nakazawa K, et al. Strengthening and toughening of 280 kg/mm2 grade maraging steel through thermomechanical treatment [J]. Trans. Iron Steel Inst. Jpn., 1979, 19: 283
[21] Viswanathan U K, Dey G K, Asundi M K. Precipitation hardening in 350 grade maraging steel [J]. Metall. Trans., 1993, 24A: 2429
[22] Antolovich S D, Saxena A, Chanani G R. Increased fracture toughness in a 300 grade maraging steel as a result of thermal cycling [J]. Metall. Trans., 1974, 5: 623
[23] Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100 [J]. Metall. Trans., 1993, 24A: 1943
[24] Little C D, Machmeier P M. High strength fracture resistant weldable steels [P]. U.S. Pat, 4076525, 1978
[25] Hemphill R M, Wert D E, Novotny P M, et al. Age hardenable alloy with a unique combination of very high strength and good toughness [P]. U.S. Pat, 5866066, 1999
[26] Garrison W M. Ultrahigh-strength steels for aerospace applications [J]. JOM, 1990, 42(5): 20
[27] Hu C D, Meng L, Dong H. Research and development of ultra-high strength steels [J]. Trans. Mater. Heat Treat., 2016, 37(11): 178
[27] 胡春东, 孟 利, 董 瀚. 超高强度钢的研究进展 [J]. 材料热处理学报, 2016, 37(11): 178
[28] Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300M steel [J]. Metall. Trans., 1977, 8A: 1439
[29] Zhirafar S, Rezaeian A, Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel [J]. J. Mater. Process. Technol., 2007, 186: 298
[30] Abbaszadeh K, Saghafian H, Kheirandish S. Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel [J]. J. Mater. Sci. Technol., 2012, 28: 336
[31] Tomita Y. Development of fracture toughness of ultrahigh strength low alloy steels for aircraft and aerospace applications [J]. Mater. Sci. Technol., 1991, 7: 481
[32] Tomita Y. Improved lower temperature fracture toughness of ultrahigh strength 4340 steel through modified heat treatment [J]. Metall. Trans., 1987, 18A: 1495
[33] Kennedy R L, Cao W D. Stainless steel [P]. U.S. Pat, 5888449, 1999
[34] Wert D E, DiSabella R P. Strong, corrosion-resistant stainless steel [J]. Adv. Mater. Process., 2006, 164: 34
[35] Ragen M A, Anthony D L, Spitzer R F. A comparison of the mechanical and physical properties of contemporary and new alloys for aerospace bearing applications [A]. Bearing Steel Technology [C]. West Conshohocken, PA: ASTM International, 2002: 362
[36] Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
[37] Caballero F G, Bhadeshia H K D H. Very strong bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251
[38] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Mater. Sci. Technol., 2002, 18: 279
[39] García-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite [J]. ISIJ Int., 2003, 43: 1238
[40] Bhadeshia H K D H, Honeycombe R W K. Steels: Microstructure and Properties [M]. 4th Ed., Oxford: Butterworth-Heinemann, 2017: 1
[41] Krauss G. Steels: Processing, Structure, and Performance [M]. 2nd Ed., Materials Park, OH: ASM International, 2015: 1
[42] Garrison W M. The effect of silicon and nickel additions on the sulfide spacing and fracture toughness of a 0.4 carbon low alloy steel [J]. Metall. Trans., 1986, 17A: 669
[43] Li Z, He Z Q, Jin J J, et al. Development of Aeronautical Ultra-High Strength Steels [M]. Beijing: National Defense Industry Press, 2012: 42
[43] 李 志, 贺自强, 金建军等. 航空超高强度钢的发展 [M]. 北京: 国防工业出版社, 2012: 42
[44] Kimura Y, Inoue T, Yin F X, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel [J]. Science, 2008, 320: 1057
[45] Cao W Q, Zhang M D, Huang C X, et al. Ultrahigh Charpy impact toughness (~450 J) achieved in high strength ferrite/martensite laminated steels [J]. Sci. Rep., 2017, 7: 41459
[46] Wang C Y, Chang Y, Yang J, et al. The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel [J]. Acta Metall. Sin., 2015, 51: 913
[46] 王存宇, 常 颖, 杨 洁等. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响 [J]. 金属学报, 2015, 51: 913
[47] Wang C Y. Investigation on 30GPa·% grade ultrahigh-strength martensitic-austenitic steels [D]. Beijing: Central Iron and Steel Research Institute, 2010
[47] 王存宇. 30GPa·%级超高强度马奥组织钢的研究 [D]. 北京: 钢铁研究总院, 2010
[48] Hui W J, Dong H, Weng Y Q. Research and development trends of high strength steel for bolts [J]. Mater. Mech. Eng., 2002, 26(11): 1
[48] 惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢的发展动向 [J]. 机械工程材料, 2002, 26(11): 1
[49] Azuma K, Chida T, Tarui T, et al. Development of super high-strength bolts with tensile strengths of 1600 to 2000 N/mm2 [J]. Int. J. Steel Struct., 2009, 9: 291
[50] Cobb H M. The History of Stainless Steel [M]. Materials Park, Ohio: ASM International, 2010: 31
[51] Hui W J, Dong H, Weng Y Q. Steels for High Strength Bolts [M]. Beijing: Metallurgical Industry Press, 1999: 1
[51] 惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢 [M]. 北京: 冶金工业出版社, 1999: 1
[52] Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
[53] Hui W J, Dong H B, Weng Y Q, et al. Delayed fracture behavior of CrMo-type high strength steel containing titanium [J]. J. Iron Steel Res. Int., 2005, 12: 43
[54] Szost B A, Vegter R H, Rivera-Díaz-del-Castillo P E J. Hydrogen-trapping mechanisms in nanostructured steels [J]. Metall. Mater. Trans., 2013, 44A: 4542
[55] Li Y, Zhang Y J, Hui W J, et al. Hydrogen absorption behavior of 1500 MPa-grade high strength steel 42CrMoVNb [J]. Acta Metall. Sin., 2011, 47: 423
[55] 李 阳, 张永健, 惠卫军等. 1500 MPa级高强度钢42CrMoVNb的氢吸附行为 [J]. 金属学报, 2011, 47: 423
[56] Hui W J, Dong H, Weng Y Q, et al. Effect of molybdenum on delayed fracture behavior of high strength steel [J]. Acta Metall. Sin., 2004, 40: 1274
[56] 惠卫军, 董 瀚, 翁宇庆等. Mo对高强度钢延迟断裂行为的影响 [J]. 金属学报, 2004, 40: 1274
[57] Kubota M, Tanaka Y, Kondo Y. Fretting fatigue strength of SCM435H steel and SUH660 heat-resistant steel in hydrogen gas environment [J]. Tribotest, 2008, 14: 177
[58] Usami S, Mori T. Creep deformation of austenitic steels at medium and low temperatures [J]. Cryogenics, 2000, 40: 117
[59] Engineer S, Huchtemann B, Schüler V. A review of the development and application of microalloyed medium carbon steels [J]. Steel Res., 1987, 58: 369
[60] Lee H W, Lee G A, Yoon D J, et al. Development of manufacturing process using cold incremental forming technique for micro-alloyed non-heat-treated material [J]. Mater. Sci. Forum, 2006, 510-511: 254
[61] Andrew J H. Nitrogen in Iron [Z]. Carnegie Scholarship Memeirs, 1912: 236
[62] Uhlig H H. The role of nitrogen in 18-8 stainless steel [J]. Trans. Am. Soc. Met., 1942: 947
[63] Speidel M O, Foct J, Hendry A. Properties and applications of high nitrogen steels [J]. High Nitrogen Steels, 1988, 88: 92
[64] Mudali U K, Raj B. High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications [M]. Philadelphia, PA: Woodhead Publishing, 2004: 5
[65] Ren Y B, Yang K, Zhang B C, et al. Nickel-free stainless steel for medical applications [J]. J. Mater. Sci. Technol., 2004, 20: 571
[66] Talha M, Behera C K, Sinha O P. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications [J]. Mater. Sci. Eng., 2015, C47: 196
[67] Wang L J, Sheng L Y, Hong C M. Influence of grain boundary carbides on mechanical properties of high nitrogen austenitic stainless steel [J]. Mater. Des., 2012, 37: 349
[68] Behjati P, Kermanpur A, Najafizadeh A, et al. Effect of nitrogen content on grain refinement and mechanical properties of a reversion-treated Ni-free 18Cr-12Mn austenitic stainless steel [J]. Metall. Mater. Trans., 2014, 45A: 6317
[69] Cui D W. Effect of solution annealing on microstructure and mechanical properties of MIM Fe-Cr-Mn-Mo-N stainless steels [J]. Adv. Mater. Res., 2010, 129-131: 886
[70] Bracke L, Penning J, Akdut N. The influence of Cr and N additions on the mechanical properties of FeMnC steels [J]. Metall. Mater. Trans., 2007, 38A: 520
[71] Olefjord I, Wegrelius L. The influence of nitrogen on the passivation of stainless steels [J]. Corros. Sci., 1996, 38: 1203
[72] Clayton C R, Halada G P, Kearns J R. Passivity of high-nitrogen stainless alloys: The role of metal oxyanions and salt films [J]. Mater. Sci. Eng., 1995, A198: 135
[73] Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS [J]. Corros. Sci., 1995, 37: 467
[74] Kamachi Mudali U, Ningshen S, Tyagi A K, et al. Influence of metallurgical and chemical variables on the pitting corrosion behaviour of nitrogen-bearing austenitic stainless steels [J]. Mater. Sci. Forum, 1999, 318-320: 495
[75] Speidel M O, Pedrazzoli R M. High nitrogen stainless steels in chloride solutions [J]. Mater. Perform., 1992, 31: 59
[76] Uggowitzer P J, Magdowski R, Speidel M O. Nickel free high nitrogen austenitic steels [J]. ISIJ Int., 1996, 36: 901
[77] Menzel J, Kirschmer W, Stein G. High nitrogen containing Ni-free austenitic steels for medical applications [J]. ISIJ Int., 1996, 36: 893
[78] Gavriljuk V G, Berns H. High Nitrogen Steel: Structure, Properties, Manufacture, Apllications [M]. Berlin Heidelberg: Springer-Verlag, 1999: 192
[79] Azuma S, Miyuki H, Kudo T. Effect of alloying nitrogen on crevice corrosion of austenitic stainless steels [J]. ISIJ Int., 1996, 36: 793
[80] Chen J L, Chen C, Chen Z Y, et al. Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial [J]. J. Biomed. Mater. Res., 2010, 95A: 341
[81] Talha M, Behera C K, Sinha O P. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications [J]. Mater. Sci. Eng., 2013, C33: 3563
[82] Wang W G, Zou X Z, Wang H, et al. Biocompatibility study of a new type of medical high nitrogen nickel-free stainless [J]. J. Funct. Mater., 2013, 44: 2362
[82] 王文革, 邹兴政, 王 宏等. 一种新型医用高氮无镍不锈钢的生物相容性研究 [J]. 功能材料, 2013, 44: 2362
[83] Singh B B, Sukumar G, Rao P P, et al. Superior ballistic performance of high-nitrogen steels against deformable and non-deformable projectiles [J]. Mater. Sci. Eng., 2019, A751: 115
[84] Ahlstr?m M G, Thyssen J P, Wennervaldt M, et al. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment [J]. Contact Dermatitis, 2019, 81: 227
[85] Faraday M. An analysis of wootz or indian steel [J]. Quart. J. Sci., 1819, (7): 288
[86] Faraday M, Stodart J. Experiments on the alloys of steel made with a view to its improvement [J]. Quart. J. Sci., 1820, (9): 319
[87] Monnartz P I. Iron-chromium alloys with special consideration of resistance to acids [J]. Metallurgie, 1911, 8: 161
[88] Waldman J. Rust: The Longest War [M]. New York: Simon and Schuster, 2016: 1
[89] Zaretsky E V. Bearing and gear steels for aerospace applications [Z]. Cleveland, Ohio: Lewis Research Center, 1990
[90] Zaretsky E V. Rolling bearing steels-a technical and historical perspective [J]. Mater. Sci. Technol., 2012, 28: 58
[91] Liu X. Effect of rare-earth Ce on the microstructure and properties of 2Cr13 stainless steel [D]. Baotou: Inner Mongolia University of Science and Technology, 2007
[91] 刘 晓. 稀土Ce对2Cr13不锈钢组织和性能的影响 [D]. 包头: 内蒙古科技大学, 2007
[92] Yu W T. Study on control technology of carbides in high-carbon martensitic stainless steel 8Cr13MoV used as knives and shears [D]. Beijing: University of Science and Technology Beijing, 2017
[92] 于文涛. 刀剪用高碳马氏体不锈钢8Cr13MoV中碳化物控制技术研究 [D]. 北京: 北京科技大学, 2017
[93] Yang Y D, Zhao H S, Liu T S, et al. Microstructure and properties of new high-carbon martensitic stainless steel [J]. J. Iron Steel Res., 2020, 32: 135
[93] 杨玉丹, 赵洪山, 刘腾轼等. 新型高碳马氏体不锈钢的组织与性能 [J]. 钢铁研究学报, 2020, 32: 135
[94] Xu M Y, Wang C, Li Y G. Research progress of antibacterial stainless steel [J]. Foundry Technol., 2016, 37: 1085
[94] 徐鸣悦, 王 丛, 李运刚. 抗菌不锈钢的研究进展 [J]. 铸造技术, 2016, 37: 1085
[95] Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad [J]. J. Iron Steel Res., 2016, 28(3): 1
[95] 李昭昆, 雷建中, 徐海峰等. 国内外轴承钢的现状与发展趋势 [J]. 钢铁研究学报, 2016, 28(3): 1
[96] Zhu Q T. Effect of the control of carbides on the sharpness of knives made of 8Cr13MoV steel [D]. Beijing: University of Science and Technology Beijing, 2019
[96] 朱勤天. 8Cr13MoV钢碳化物控制及对刀具锋利性能的影响 [D]. 北京: 北京科技大学, 2019
[1] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[2] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[3] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[4] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[7] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[8] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[9] 魏世忠,徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4): 523-538.
[10] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[11] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[12] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[13] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[14] 易红亮,常智渊,才贺龙,杜鹏举,杨达朋. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020, 56(4): 429-443.
[15] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.