Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 898-908    DOI: 10.11900/0412.1961.2019.00382
  本期目录 | 过刊浏览 |
羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为
曹凤婷1,2, 魏洁1, 董俊华1(), 柯伟1, 王铁钢2, 范其香2
1.中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
2.天津职业技术师范大学机械工程学院天津市高速切削与精密加工重点实验室 天津 300222
Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-
CAO Fengting1,2, WEI Jie1, DONG Junhua1(), KE Wei1, WANG Tiegang2, FAN Qixiang2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Tianjin Key Laboratory of High Speed Cutting and Precision Machining, School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
全文: PDF(2810 KB)   HTML
摘要: 

采用电化学技术(动电位极化曲线、自腐蚀电位、EIS以及Mott-Schottky曲线)和表面分析方法(SEM、XPS)研究了羟基亚乙基二膦酸(HEDP)对空冷20SiMn低合金钢在含Cl-的高碱性混凝土模拟孔隙液中的缓蚀作用及机理。结果表明, HEDP对20SiMn钢在含1 mol/L NaCl饱和Ca(OH)2溶液中的缓蚀效果随HEDP浓度的升高存在极值,最佳浓度为1.441×10-4 mol/L。在此浓度下HEDP将20SiMn钢的钝性保持时间从6 h延长至9 h,缓蚀效率达到46.45%~59.78%。在发生点蚀的情况下,HEDP对点蚀的发展亦有显著的抑制作用,缓蚀效率超过93%。电化学和表面分析结果表明,HEDP优先吸附在钝化膜表面,通过竞争吸附机制屏蔽了侵蚀性Cl-向钝化膜表面的附着,从而对其产生保护作用。

关键词 羟基亚乙基二膦酸腐蚀缓蚀剂吸附混凝土模拟孔隙液    
Abstract

The corrosion of steel rebar in concrete will be induced once the passive film is destroyed by chlorides or carbonation. Several techniques have been employed to reduce the corrosion so far. Among them, adding inhibitors is effective one because of its advantages, such as high efficiency and easy handling. 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), a typical organic phosphonic acid, is a low toxic corrosion inhibitor for steel and iron in neutral aerobic environment. This compound was first used as scale inhibitor in water treatment industry, such as cooling water circulation system. The molecule of HEDP has two phosphate groups, making it a powerful chelating ability with metallic ions. However, most of the current studies of HEDP focus on neutral or near-neutral systems, and there are few reports on the corrosion inhibition of steel reinforcement in alkaline environment. Therefore, it is not clear whether HEDP can play the role of corrosion inhibitor by protecting the passive film and resist foreign corrosive Cl-. In this work, the inhibition effect of HEDP towards 20SiMn steel was investigated in simulated concrete pore solution contaminated by Cl- (Sat.Ca(OH)2+1 mol/L NaCl) by electrochemical methods (corrosion potential, potentiodynamic polarization curves, EIS and Mott-Schottcky curves) and surface analysis techniques (SEM, XPS). The results showed that HEDP was a mixed inhibitor and its inhibition efficiency increased first and then decreased with the increase of concentration, the optimal concentration is 1.441×10-4 mol/L . At the optimal concentration, HEDP could obviously enlarge the passive region, prolong the passive period of 20SiMn steel from 6 h to 9 h , and improve the charge-transfer resistance significantly with the inhibition efficiency around 46.45%~59.78%. When pitting corrosion occurs, HEDP could hinder its development with the inhibition efficiency over 93%. The inhibition mechanism was the preferential adsorption of HEDP over Cl- by forming a complete adsorption film outside the passive film of the steel.

Key wordsHEDP    corrosion    corrosion inhibitor    adsorption    simulated concrete pore solution
收稿日期: 2019-11-11     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(U1867216);国家自然科学基金项目(51501201);国家自然科学基金项目(51801219)
通讯作者: 董俊华     E-mail: jhdong@imr.ac.cn
Corresponding author: DONG Junhua     E-mail: jhdong@imr.ac.cn
作者简介: 曹凤婷,女,1988年生,讲师,博士

引用本文:

曹凤婷, 魏洁, 董俊华, 柯伟, 王铁钢, 范其香. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为[J]. 金属学报, 2020, 56(6): 898-908.
Fengting CAO, Jie WEI, Junhua DONG, Wei KE, Tiegang WANG, Qixiang FAN. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-. Acta Metall Sin, 2020, 56(6): 898-908.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00382      或      https://www.ams.org.cn/CN/Y2020/V56/I6/898

图1  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2中添加不同浓度羟基亚乙基二磷酸(HEDP)时的动电位极化曲线
图2  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2中添加不同浓度HEDP时的EIS
图3  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2溶液中的EIS
图4  20SiMn钢在添加1.441×10-4 mol/L HEDP的1 mol/L NaCl饱和Ca(OH)2溶液中的EIS
图5  钝化阶段、点蚀阶段无感抗弧以及点蚀阶段有感抗弧的等效模拟电路图

HEDP

mol·L-1

Time

h

Rs

Ω·cm2

Qf-Y0

10-4 F·cm-2

nf

Rf

104 Ω·cm2

Qct-Y0

10-5 F·cm-2

nct

Rct

105 Ω·cm2

L

105 H·cm2

RL

103 Ω·cm2

η

%

00.54.501.681.000.124.350.911.66-
33.821.520.980.234.080.922.09-
63.831.560.970.263.890.931.83-
93.841.241.000.104.280.920.09-
242.990.460.920.0714.780.570.051.549.62-
1.441×10-40.54.261.100.870.814.730.943.1046.45
32.910.910.871.594.450.943.9747.36
63.820.760.862.544.470.964.5559.78
93.770.750.863.334.000.967.1298.74
243.950.440.850.391.870.660.7693.42
表1  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2空白及添加1.441×10-4 mol/L HEDP溶液中EIS的拟合结果
图6  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2空白和添加1.441×10-4 mol/L HEDP溶液中膜层电阻(Rf)、电荷转移电阻(Rct)随浸泡时间的变化
图7  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2空白和添加1.441×10-4 mol/L HEDP溶液中的自腐蚀电位
图 8  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2空白和添加1.441×10-4 mol/L HEDP溶液中浸泡7 h除锈的SEM像
图9  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2空白和添加1.441×10-4 mol/L HEDP溶液中的Mott-Schottky 曲线
图10  20SiMn钢在1 mol/L NaCl饱和Ca(OH)2空白或添加1.441×10-4 mol/L HEDP溶液中浸泡1 h的XPS分峰处理结果
[1] Biezma M V, San Cristóbal J R. Methodology to study cost of corrosion [J]. Corros. Eng. Sci. Technol., 2005, 40: 344
doi: 10.1179/174327805X75821
[2] Page C L, Treadaway K W J. Aspects of the electrochemistry of steel in concrete [J]. Nature, 1982, 297: 109
doi: 10.1038/297109a0
[3] Jones S, Martys N, Lu Y, et al. Simulation studies of methods to delay corrosion and increase service life for cracked concrete exposed to chlorides [J]. Cem. Concr. Compos., 2015, 58: 59
doi: 10.1016/j.cemconcomp.2014.12.014
[4] Cao F T, Wei J, Dong J H, et al. Corrosion behavior of 20SiMn steel rebar in carbonate/bicarnonate solutions with the same pH value [J]. Acta Metall. Sin., 2014, 50: 674
doi: 10.3724/SP.J.1037.2014.00041
[4] 曹凤婷, 魏 洁, 董俊华等. 20SiMn钢在恒定pH值的碳酸盐溶液中的腐蚀行为 [J]. 金属学报, 2014, 50: 674
doi: 10.3724/SP.J.1037.2014.00041
[5] Andrade C, Page C L. Pore solution chemistry and corrosion in hydrated cement systems containing chloride salts: A study of cation specific effects [J]. Br. Corros. J., 1986, 21: 49
doi: 10.1179/000705986798272415
[6] Pourbaix M. Some applications of potential-pH diagrams to the study of localized corrosion [J]. J. Electrochem. Soc., 1976, 123: C25
[7] Abd El Haleem S M, El Wanees S A, Bahgat A. Environmental factors affecting the corrosion behaviour of reinforcing steel. VI. Benzotriazole and its derivatives as corrosion inhibitors of steel [J]. Corros. Sci., 2014, 87: 321
doi: 10.1016/j.corsci.2014.06.043
[8] Zhou X, Yang H Y, Wang F H. Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution [J]. Corros. Sci., 2012, 54: 193
doi: 10.1016/j.corsci.2011.09.018
[9] Felhősi I, Keresztes Z, Kármán F H, et al. Effects of bivalent cations on corrosion inhibition of steel by 1-hydroxyethane-1,1-diphosphonic acid [J]. J. Electrochem. Soc., 1999, 146: 961
doi: 10.1149/1.1391706
[10] Kármán F H, Felhösi I, Kálman E, et al. The role of oxide layer formation during corrosion inhibition of mild steel in neutral aqueous media [J]. Electrochim. Acta, 1998, 43: 69
doi: 10.1016/S0013-4686(97)00236-3
[11] Akrout H, Bousselmi L, Maximovitch S, et al. Adsorption of corrosion inhibitors (SA, HEDP) using EQCM: Chloride effect and synergic behavior [J]. J. Mater. Sci., 2012, 47: 8085
doi: 10.1007/s10853-012-6702-x
[12] Awad H S, Turgoose S. Role of complexes in inhibition of mild steel by zinc-1-hydroxyethylidene-1, 1-diphosphonic acid mixtures [J]. Br. Corros. J., 2002, 37: 147
doi: 10.1179/000705902225004347
[13] Kolodyńska D. Cu(II), Zn(II), Ni(II), and Cd(II) complexes with HEDP removal from industrial effluents on different ion exchangers [J]. Ind. Eng. Chem. Res., 2010, 49: 2388
doi: 10.1021/ie9014414
[14] Wang Z L, Yang Y X, Zhang J B, et al. A study on electroplating of zinc nickel alloy with HEDP plating bath [J]. Russ. J. Electrochem., 2006, 42: 22
[15] Lacour S, Daeluchat V, Bollinger J C, et al. Influence of carbonate and calcium ions on the phosphonate complexation with Cu, Zn, Cd and Ni in fresh waters: An evaluation of thermodynamic constants and a chemical model [J]. Environ. Technol., 1999, 20: 249
doi: 10.1080/09593332008616815
[16] Pu S M, Chen M Y, Chen Y Q, et al. Zirconium ions integrated in 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a metalorganic-like complex coating on biodegradable magnesium for corrosion control [J]. Corros. Sci., 2018, 144: 277
doi: 10.1016/j.corsci.2018.09.003
[17] Sekine I, Hirakawa Y. Effect of 1-hydroxyethylidene-1, 1-diphosphonic acid on the corrosion of SS 41 steel in 0.3% sodium chloride solution [J]. Corrosion, 1986, 42: 272
doi: 10.5006/1.3584904
[18] Mohammedi D, Benmoussa A, Fiaud C, et al. Synergistic or additive corrosion inhibition of mild steel by a mixture of HEDP and metasilicate at pH 7 and 11 [J]. Mater. Corros., 2004, 55: 837
doi: 10.1002/(ISSN)1521-4176
[19] Awad H S. The effect of zinc-to-HEDP molar ratio on the effectiveness of zinc-1, hydroxyethylidene-1, 1 diphosphonic acid in inhibiting corrosion of carbon steel in neutral solutions [J]. Anti-Corros. Method Mater., 2005, 52: 22
doi: 10.1108/00035590510574880
[20] Wei J. Research on improving the corrosion resistance of hot-rolled rebar by chemical cooling process [D]. Shenyang: Institute of Metal Research, Chinese Academy of Science, 2009
[20] 魏 洁. 化学冷却工艺提高热轧螺纹钢耐蚀性的研究 [D]. 沈阳: 中国科学院金属研究所, 2009
[21] Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25
doi: 10.1179/147842204225016859
[22] Kimura M, Kihira H, Ohta N, et al. Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance [J]. Corros. Sci., 2005, 47: 2499
doi: 10.1016/j.corsci.2005.04.005
[23] Olefjord I, Brox B, Jelvestam U. Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA [J]. J. Electrochem. Soc., 1985, 132: 2854
doi: 10.1149/1.2113683
[24] Wang Y, Jiang S L, Zheng Y G, et al. Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions [J]. Corros. Sci., 2012, 63: 159
doi: 10.1016/j.corsci.2012.05.025
[25] Lu Y F. Corrosion behavior of 3Ni0.3Cu low alloy steel in simulated deep groundwater environments [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2015
[25] 卢云飞. 3Ni0.3Cu低合金钢在深层地下水模拟溶液中的腐蚀行为 [D]. 沈阳: 中国科学院金属研究所, 2015
[26] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. New York: Plenum Press, 1980: 316
[27] MacDonald D D, Urquidi‐MacDonald M. Theory of steady‐state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
doi: 10.1149/1.2086949
[28] Cao F T, Wei J, Dong J H, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in saturated Ca(OH)2 solution with 1 mol·L-1 NaCl [J]. Corros. Eng. Sci. Technol., 2018, 53: 283
doi: 10.1080/1478422X.2018.1459063
[29] Cui X F, Li Q F, Li Y, et al. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy [J]. Appl. Surf. Sci., 2008, 255: 2098
doi: 10.1016/j.apsusc.2008.06.199
[30] Oku M, Hirokawa K. X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds [J]. J. Electron. Spectrosc. Relat. Phenom., 1976, 8: 475
doi: 10.1016/0368-2048(76)80034-5
[31] Tan B J, Sherwood P M A, Klabunde K J. XPS studies of gold films prepared from nonaqueous gold colloids [J]. Langmuir, 1990, 6: 106
[32] Allen G C, Hallam K R. Characterisation of the spinels MxCo1-xFe2O4 (M=Mn, Fe or Ni) using X-ray photoelectron spectroscopy [J]. Appl. Surf. Sci., 1996, 93: 25
doi: 10.1016/0169-4332(95)00186-7
[33] Marcus P, Grimal J M. The anodic dissolution and passivation of Ni-Cr-Fe alloys studied by ESCA [J]. Corros. Sci., 1992, 33: 805
doi: 10.1016/0010-938X(92)90113-H
[34] Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution [J]. Biomaterials, 1991, 12: 767
doi: 10.1016/0142-9612(91)90028-9
[35] Pearson R G. Acids and bases [J]. Science, 1966, 151: 172
doi: 10.1126/science.151.3707.172
[36] Dong J H, Song G L, Lin H C, et al. The adsoption of thiourea and its derivatives on iron electrode in acidic solution [J]. Acta Phys. Chim. Sin., 1996, 12: 34
[36] 董俊华, 宋光玲, 林海潮等. 酸性介质中硫脲及衍生物在纯铁上的吸附作用 [J]. 物理化学学报, 1996, 12: 34
doi: 10.3866/PKU.WHXB19960108
[1] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[2] 高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[8] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[9] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[10] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[11] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[12] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[13] 曹梦薇,蔡桃,张霞. Fe-BTC表面氨基化及对染料和重金属离子的吸附性能研究[J]. 金属学报, 2019, 55(7): 821-830.
[14] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[15] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.