Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 769-777    DOI: 10.11900/0412.1961.2015.00532
  论文 本期目录 | 过刊浏览 |
TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*
郭文营1,2,胡小强2(),马晓平2,李殿中2
1 中国科学技术大学化学与材料科学学院, 合肥 230022。
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016。
EFFECT OF TiN PRECIPITATES ON SOLIDIFICATION MICROSTRUCTURE OF MEDIUM CARBON Cr-Mo WEAR RESISTANT STEEL
Wenying GUO1,2,Xiaoqiang HU2(),Xiaoping MA2,Dianzhong LI2
1 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230022, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1165 KB)   HTML
摘要: 

借助热力学理论计算, 设计了固液两相区保温凝固和连续冷却凝固实验, 采用OM, SEM, EDS和EPMA等方法, 研究了中碳Cr-Mo耐磨钢中TiN的析出行为及其对凝固组织的影响. 结果表明, 随着Ti, N含量的增加, TiN在固液两相区的析出温度逐渐升高. 当钢中Ti的质量分数为0.090%, N为0.014%时, TiN直接在液相区析出. 在液固两相区内不同温度保温并水淬凝固后, TiN主要分布于凝固组织的粗大枝晶间、枝晶前沿和剩余液相区域的等轴晶晶界处. 此外, 少量TiN分布在粗大枝晶和等轴晶内. 在连续冷却凝固过程中, TiN析出相的形成温度是影响凝固组织粗细的主要因素. 随着Ti含量的增加, TiN析出相的形成温度升高, 钢液实际凝固温度增高, 凝固区间增大, 局部凝固时间延长, 凝固组织的二次枝晶臂间距不断增大; 当Ti的质量分数超过0.066%后, TiN析出相的形成温度与液相线接近或高于液相线, 钢液实际凝固温度变化不大, 二次枝晶臂间距趋于稳定.

关键词 耐磨钢TiN析出相凝固组织二次枝晶臂间距    
Abstract

As an important type of wear-resistant material, the low-alloyed medium carbon wear resistant steel has been widely used in mining, power and metallurgical industries due to its low cost and excellent mechanical properties. However, the coarse as-cast microstructure tends to form in large wear resistant castings because of the long solidification time. As a result, spalling wear resulting from the preferential initiation and propagation of cracks along interdendrite will occur during service process, which severely degrades the wear resistance and service life. In this work, Ti is added to improve the mechanical properties of medium carbon Cr-Mo wear resistant steel. The precipitation behavior of TiN in the solidification process and its effect on the solidification microstructure were investigated by thermodynamic calculation, constant temperature solidification experiment at solid-liquid two phase region and continuous cooling solidification experiment by using OM, SEM, EDS and EPMA. The results show that TiN precipitation temperature gradually increases at solid-liquid two-phase region with the increase of contents of Ti and N. TiN precipitates directly in the liquid region when Ti and N contents (mass fraction) are 0.090% and 0.014%, respectively. Holding at different temperatures of solid-liquid two-phase region, a very small amount of TiN precipitates are present within the dendritic arm, and a large number of TiN precipitates are present at the interdendritic positions and frontiers of dendrites. After quenching, in the remaining liquid most of TiN are present at the boundaries of equiaxed grain and a little amount of TiN stay within the equiaxed grain. During the continuous cooling solidification, TiN precipitation temperature is the main factor affecting the refinement of solidification microstructure. With the increase of Ti content, TiN precipitation temperature increases. At the same time, the actual solidification temperature of liquid steel rises, the solidification temperature range broadens and the local solidification time extends, which results in the increase of secondary dendrite arm spacing. When Ti content exceeds 0.066%, TiN precipitation temperature is near or above the liquidus line. The actual solidification temperature of liquid steel remains unchanged. Therefore, the secondary dendrite arm spacing becomes stable.

Key wordswear-resistant steel    TiN precipitate    solidification microstructure    secondary dendrite arm spacing
收稿日期: 2015-10-15     
基金资助:* 国家自然科学基金资助项目 51301175

引用本文:

郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
Wenying GUO, Xiaoqiang HU, Xiaoping MA, Dianzhong LI. EFFECT OF TiN PRECIPITATES ON SOLIDIFICATION MICROSTRUCTURE OF MEDIUM CARBON Cr-Mo WEAR RESISTANT STEEL. Acta Metall Sin, 2016, 52(7): 769-777.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00532      或      https://www.ams.org.cn/CN/Y2016/V52/I7/769

图1  凝固实验工艺方案示意图
Sample C Si Mn P S Cr Mo Cu Ni Ti N Fe
J0 0.35 0.69 1.04 0.009 0.003 2.25 0.31 0.27 0.27 0.090 0.014 Bal.
J1 0.36 0.71 1.02 0.008 0.006 2.24 0.28 0.25 0.26 0.066 0.014 Bal.
J2 0.34 0.72 1.00 0.007 0.006 2.23 0.27 0.25 0.26 0.041 0.011 Bal.
J3 0.35 0.72 1.00 0.006 0.006 2.25 0.30 0.25 0.26 0.021 0.010 Bal.
J4 0.34 0.70 1.02 0.006 0.006 2.40 0.28 0.25 0.28 0 0.011 Bal.
表1  试样的化学成分
图2  热力学平衡状态下实验钢中各相的质量分数与温度的关系
Sample Mass fraction
of Ti / %
Mass fraction
of N / %
TiN precipitation
temperature / ℃
Fraction of
solidification
J0 0.090 0.014 1500 0
J1 0.066 0.014 1483 0.10
J2 0.041 0.011 1471 0.50
J3 0.021 0.010 1451 0.80
表2  试样中TiN析出相的析出参数
图3  J2钢在不同温度保温20 min后水淬得到的凝固组织OM像
图4  J2钢在1450 ℃保温20 min后TiN析出相的SEM像和EDS分析
图5  J2钢在1450 ℃保温20 min后TiN析出相在凝固组织中的分布及其EPMA分析
图6  J2钢在1450 ℃保温20 min后TiN在凝固组织中数量的统计结果
图7  J0, J1和J4钢以冷却速率2.83 ℃/min连续冷却至1425 ℃时的凝固组织
图8  试样以冷却速率2.83 ℃/min冷却至1350 ℃时Ti含量对二次枝晶臂间距的影响
[1] Deng X T, Wang Z D, Han Y, Zhao H, Wang G D.J Iron Steel Res Int, 2014; 21(1): 98
[2] Gahr K H Z.Tribol Int, 1998; 31: 587
[3] Melloy G F, Summon P R, Podgursky P P.Mater Trans, 1973; 4: 2279
[4] Kapadia B M, Brown R M, Murphy W J.Trans Met Soc AIME, 1968; 242: 1689
[5] Shen Y L, Hansen S S.Metall Mater Trans, 1997; 28A: 2027
[6] Wang C, Gao H Y, Dai Y B, Ruan X M, Wang J, Sun B D.Metall Mater Trans, 2010; 41A: 1616
[7] Bramfitt B L.Metall Trans, 1970; 1: 1987
[8] Shi C X, Cheng G G, Li Z J, Zhao P.J Iron Steel Res Int, 2008; 15(3): 57
[9] Poole W, Mitchell A, Weinberg F.High Temp Mater Proc, 1997; 16: 173
[10] Pan N, Song B, Zhai Q J, Wen B.J Univ Sci Technol Beijing, 2010; 32: 179
[10] (潘宁, 宋波, 翟启杰, 文彬. 北京科技大学学报, 2010; 32: 179)
[11] Sasaki M, Ohsasa K, Kudoh M, Matsuura K.ISIJ Int, 2008; 48: 340
[12] Ohno M, Matsuura K.ISIJ Int, 2008; 48: 1373
[13] Sasaki M, Matsuura K, Ohsasa K, Ohno M.ISIJ Int, 2009; 49: 1367
[14] Sasaki M, Matsuura K, Ohsasa K, Ohno M.ISIJ Int, 2009; 49: 1362
[15] Fu J, Zhu J, Di L, Tong F S, Liu D L, Wang Y L.Acta Metall Sin, 2000; 36: 801
[15] (傅杰, 朱剑, 迪林, 佟福生, 柳得橹, 王元立. 金属学报, 2000; 36: 801)
[16] Yang X, Cheng G G, Wang M L, Li Y L, Wang Y G, Zhao P. J Univ Sci Technol Beijing (Engl Lett), 2003; 10: 24
[17] Nagata M T, Speer J G, Matlock D K.Metall Mater Trans, 2002; 33A: 3099
[18] Cheng G G, Zhu X X, Peng Y F, Wang Y G, Zhao P.J Univ Sci Technol Beijing, 2002; 24: 273
[18] (成国光, 朱晓霞, 彭岩峰, 王玉钢, 赵沛. 北京科技大学学报, 2002; 24: 273)
[19] Shi X F, Cheng G G.Steel Making, 2008; 24(4): 36
[19] (施晓芳, 成国光. 炼钢, 2008; 24(4): 36)
[20] Pagounis E, Lindroos V K.Mater Sci Eng, 1998; A246: 221
[21] Yan W, Shan Y Y, Yang K.Metall Mater Trans, 2006; 37A: 2147
[22] Du J, Strangwood M, Davis C L. J Mater Sci Technol, 2012; 28: 878
[23] Yong Q L.Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006: 28
[23] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 28)
[24] Cui Z Q, Tan Y C.Metallographic and Thermal Treatment. 2nd Ed., Beijing: China Machine Press, 2007: 37
[24] (崔忠圻, 覃耀春. 金属学与热处理. 第二版, 北京: 机械工业出版社, 2007: 37)
[25] Kurz W, Fisher D J.Fundamentals of Solidification. 4th Ed., Aedermannsdorf: Trans Tech Publications Ltd, 1998: 85
[26] Han Q Y, Hu H Q. J Univ Sci Technol Beijing, 1985; (1): 1
[26] (韩青有, 胡汉起. 北京科技大学学报, 1985; (1): 1)
[27] Pierer R, Bernhard C. J Mater Sci, 2008; 43: 6938
[28] Paliwal M, Kang D H, Essadiqi E, Jung I H.Adv Mater Res, 2012; 409: 362
[1] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[2] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[3] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[4] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[5] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[6] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[7] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[8] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[9] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
[10] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[11] 燕云程, 丁宏升, 宋尽霞, 康永旺, 陈瑞润, 郭景杰. 工艺参数对电磁冷坩埚定向凝固Nb-Si基合金固液界面的影响[J]. 金属学报, 2014, 50(9): 1039-1045.
[12] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[13] 赵九洲, 李璐, 张显飞. 合金凝固过程元胞自动机模型及模拟方法的发展*[J]. 金属学报, 2014, 50(6): 641-651.
[14] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
[15] 张凤英 谭华 陈静 林鑫 黄卫东. 混合焓对激光多层沉积Ti-6Al-4V合金凝固组织的影响[J]. 金属学报, 2012, 48(2): 159-163.