Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1350-1358    DOI: 10.11900/0412.1961.2017.00558
  本期目录 | 过刊浏览 |
加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响
张凯1, 陈银莉1(), 孙彦辉1, 徐志军2
1 北京科技大学钢铁共性技术协同创新中心 北京 100083
2 北京科技大学工程技术研究院 北京 100083
Effect of H2O(g) on Decarburization of 55SiCr Spring Steel During the Heating Process
Kai ZHANG1, Yinli CHEN1(), Yanhui SUN1, Zhijun XU2
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing,Beijing 100083, China
2 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张凯, 陈银莉, 孙彦辉, 徐志军. 加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响[J]. 金属学报, 2018, 54(10): 1350-1358.
Kai ZHANG, Yinli CHEN, Yanhui SUN, Zhijun XU. Effect of H2O(g) on Decarburization of 55SiCr Spring Steel During the Heating Process[J]. Acta Metall Sin, 2018, 54(10): 1350-1358.

全文: PDF(8719 KB)   HTML
摘要: 

设计了气氛混合装置,控制炉气成分以及H2O(g)含量,利用真空管式加热炉对弹簧钢铸坯试样进行加热保温。采用激光多点共聚焦显微镜研究了混合气氛下H2O(g)对弹簧钢表面脱碳的影响。结果表明,试样总脱碳层厚度随温度升高而增加;混合气氛下,650 ℃出现轻微铁素体脱碳,700~950 ℃有明显铁素体脱碳层,850 ℃为铁素体脱碳峰值温度,与空气条件相比,表面铁素体脱碳更加严重,脱碳开始温度有所降低。低温区表面脱碳的发生与C浓度梯度驱动下珠光体片层中渗碳体的溶解有关,铁素体脱碳层晶粒形态呈现为尺寸细小、无明显取向。H2O(g)破坏防止脱碳的保护机制,对试样脱碳程度的加深有重要作用。

关键词 弹簧钢表面脱碳H2O(g)加热温度氧化层    
Abstract

Spring steel is an important steel widely used in the national economic construction. Its application environment is quite harsh, so it strongly demands for a high quality of the surface. However, the decarburization behavior on the surface seriously affects the surface quality and reduces the fatigue performance of materials. Decarburization is caused by chemical reaction between oxidizing atmosphere and steel surface. Hydrosphere, as a component of the oxidizing atmosphere, could lead to a significant influence on decarburization process. Our experimental materials, taken from continuous casting billet, were polished carefully by abrasive paper in order to remove stains, original scale and decarburization layer. Components of furnace gas were controlled by mixing units designed independently. Spring steel samples were heated by a tube vacuum furnace in 600~950 ℃. The mixed atmosphere contains (15%~20%)CO2, (2%~4%)O2, hydrosphere of different contents and N2 in balance. With the condition of the mixed atmosphere, influence of hydrosphere on surface decarburization of spring steel 55SiCr was investigated by 3D measuring laser microscope. The results show that, with the influence of the mixed atmosphere, decarburization is able to happen during low temperature interval, 650 ℃~Ac1 (Ac1: starting temperature of austenitization during slow heating). The thickness of total decarburized layer increases correspondingly with the temperature. In the mixed atmosphere, slight decarburization occurs at 650 ℃ and obvious ferrite decarburization layer can be detected within a temperature range of 700~950 ℃, which is more serious than that in the air. The peak temperature of ferrite decarburization is 850 ℃ under both mixed atmosphere and air. The surface decarburization in low temperature region is related to the dissolution of cementite in pearlite lamellae driven by carbon concentration gradient. When the decarburization degree deepens as time goes, partial pearlite colony begins to shrink, much line form cementite dissolves gradually, and the line cementite becomes short and punctate. The grain morphology of ferrite decarburization layer is different from that who generates within α+γ phase region, which is small in size and without a strong orientation. Hydrosphere in mixed atmosphere could increase porosity of oxidation layer and destroy the important protection mechanism of preventing decarburization by compact scale. It is deduced that existing of hydrosphere offers a chance for low temperature decarburization process occurring and hydrosphere plays an important role in deepening the decarburization degree of samples.

Key wordsspring steel    surface decarburization    hydrosphere    heating temperature    oxide scale
收稿日期: 2017-12-26     
ZTFLH:  TG142.1  
作者简介:

作者简介 张 凯,男,1993年生,硕士生

图1  气氛控制装置示意图
No. H2O(g) content Holding time Heating procedure
gm-3 min
1 5.77 30 Vacuum protection heating at 600~950 ℃, heat
preservation in mixed atmosphere, air cooling
2 - 30 Heating and holding at 700~950 ℃,
muffle furnace, air cooling
3 12.09 60 Vacuum protection heating at 650 ℃,
heat preservation in mixed atmosphere, air cooling
4 12.09 60 Vacuum protection heating at 650 ℃, heat preservation
in nitrogen atmosphere, air cooling
5 - 15 Vacuum protection heating at 850 ℃, heat preservation
in nitrogen atmosphere, air cooling
表1  表面脱碳实验研究条件
图2  H2O(g)含量为5.77 g/m3、保温时间为30 min时(No.1)不同温度下55SiCr弹簧钢的脱碳层组织
图3  不同气氛下保温30 min时55SiCr弹簧钢脱碳层厚度随温度变化
图4  H2O(g)含量为12.09 g/m3不同气氛下650 ℃保温60 min时(No.3和No.4) 55SiCr弹簧钢的脱碳组织
图5  纯N2保护下在850 ℃保温15 min时(No.5) 55SiCr弹簧钢的脱碳组织
图6  H2O(g)含量为5.77 g/m3混合气氛下700 ℃保温60 min时55SiCr弹簧钢不同位置的显微组织
图7  低温区表面脱碳机制示意图
图8  0.001 mol气氛时的平衡C浓度和0.01 mol气氛时的固相产物分布
[1] Li D J, Anghelina D, Burzic D, et al.Investigation of decarburization in spring steel production process—Part I: Experiments[J]. Steel Res. Int., 2009, 80: 298
[2] Choi S, van der Zwaag S. Prediction of decarburized ferrite depth of hypoeutectoid steel with simultaneous oxidation[J]. ISIJ Int., 2012, 52: 549
[3] Zhao X J, Guo J, Wang H Y, et al. Effects of decarburization on the wear resistance and damage mechanisms of rail steels subject to contact fatigue [J]. Wear, 2016, 364-365: 130
[4] An L Q, Liu Y B, Liu D Y, et al.Effect of practical decarburized depth on fatigue property of 60Si2CrVAT spring steel[J]. J. Dalian Jiaotong Univ., 2009, 30(3): 52(安丽乔, 刘玉宝, 刘德义等. 脱碳深度对60Si2CrVAT弹簧钢疲劳性能的影响[J]. 大连交通大学学报, 2009, 30(3): 52)
[5] Wang H J, Rong Z, Xiang L, et al.Effect of decarburization annealing temperature and time on the carbon content, microstructure, and texture of grain-oriented pure iron[J]. Int. J. Min. Met. Mater., 2017, 24: 393
[6] Zhang C L, Liu Y Z, Zhou L Y, et al.Forming condition and control strategy of ferrite decarburization in 60Si2MnA spring steel wires for automotive suspensions[J]. Int. J. Min. Met. Mater., 2012, 19: 116
[7] Hu L, Wang L, Ma H.Behaviors of oxidation and decarburization on surfaces of high carbon steel wire rods[J]. J. Iron Steel Res., 2016, 28(3): 67(胡磊, 王雷, 麻晗. 高碳钢盘条的表面氧化与脱碳行为[J]. 钢铁研究学报, 2016, 28(3): 67)
[8] Chen Y L, Zuo M F, Luo Z L, et al.Theoretical and experimental study on surface decarburization of 60Si2Mn spring steel[J]. Trans. Mater. Heat Treat., 2015, 36: 192(陈银莉, 左茂方, 罗兆良等. 60Si2Mn弹簧钢表面脱碳理论及试验研究[J]. 材料热处理学报, 2015, 36: 192)
[9] Li H Y, Chen G, Tang W.Studies of ferrite decarburization behavior in spring steel for automotive suspensions[J]. Mater. Sci. Technol., 2014, 22(4): 49(李红英, 陈广, 唐薇. 汽车悬架用弹簧钢铁素体全脱碳行为研究[J]. 材料科学与工艺, 2014, 22(4): 49)
[10] Xiao J F, Liu Y Z, Zhang C L, et al.Surface decarburization of spring steel 55SiCrA[J]. Heat Treat. Met., 2010, 35(12): 94(肖金福, 刘雅政, 张朝磊等. 弹簧钢55SiCrA脱碳规律的研究[J]. 金属热处理, 2010, 35(12): 94)
[11] Masahiro N, Shigenobu N, Hiroshi Y, et al.Calculation of ferrite decarburizing depth based on steel chemical composition and heating conditions (FEATURE: Wire Rod and Bar Steels)[J]. R&D Kobe Steel Eng. Rep., 2006, 56(3): 26(野村正裕, 難波茂信, 家口浩等. 鋼の化学成分および加熱条件を考慮したフェライト脱炭深さの計算 (特集: 線材?棒鋼)[J]. R&D神戸製鋼技報, 2006, 56(3): 26)
[12] Lu X Y, Wu C, Luo D X, et al.Behavioral research on decarburization and oxidation of the 55SiCr spring steel[J]. Heat Treat. Technol. Equip., 2016, 37(2): 63(鲁修宇, 吴超, 罗德信等. 55SiCr弹簧钢脱碳与氧化行为研究[J]. 热处理技术与装备, 2016, 37(2): 63)
[13] Liu L H, Ding W Z.Study on the decarburization of spring steel 60Si2Mn[J]. Heat Treat., 2005, 20(3): 6(刘丽华, 丁伟中. 60Si2Mn弹簧钢脱碳的研究[J]. 热处理, 2005, 20(3): 6)
[14] Liu Y B, Zhang W, Tong Q, et al.Effects of temperature and oxygen concentration on the characteristics of decarburization of 55SiCr spring steel[J]. ISIJ Int., 2014, 54: 1920
[15] Donahue S J, Renowden M.Automated atmosphere control system advances heat treating cycles[J]. Wire J. Int., 1997, 4: 82
[16] Cai Q F.Furnace [M]. 3rd Ed., Beijing: Metallurgical Industry Press, 2007: 135(蔡乔方. 加热炉[M]. 第3版. 北京: 冶金工业出版社, 2007: 135)
[17] Baud J, Ferrier A, Manenc J, et al.The oxidation and decarburizing of Fe-C alloys in air and the influence of relative humidity[J]. Oxid. Met., 1975, 9: 69
[18] Wang M.Study on surface decarbonization of steel 55SiCr used for suspension springs of automobile [D]. Beijing: University of Science and Technology Beijing, 2009(王猛. 汽车弹簧用钢55SiCr的表面脱碳研究 [D]. 北京: 北京科技大学, 2009)
[19] Prawoto Y, Sato N, Otani I, et al.Carbon restoration for decarburized layer in spring steel[J]. J. Mater. Eng. Perform., 2004, 13: 627
[20] Illingworth T C, Golosnoy I O.Numerical solutions of diffusion-controlled moving boundary problems which conserve solute[J]. J. Comput. Phys., 2005, 209: 207
[21] Hu X J, Zhang B M, Chen S H, et al.Oxide scale growth on high carbon steel at high temperatures[J]. J. Iron Steel Res. Int., 2013, 20: 47
[22] Cao A R, Li Y F, Wang J, et al.Research of oxidation and decarburization behavior of spring steel 55SiCr[J]. Heat Treat. Met., 2010, 35(9): 51(曹安然, 李玉芳, 王剑等. 弹簧钢55SiCr氧化与脱碳特性的研究[J]. 金属热处理, 2010, 35(9): 51)
[23] Manenc J, Vagnard G.Etude de L'oxydation D'alliages fer-carbone[J]. Corros. Sci., 1969, 9: 857
[24] Plumensi J P, Kohn A, Vagnard G, et al.Etude de la solubilite du carbone dans le protoxyde de fer[J]. Corros. Sci., 1969, 9: 309
[25] Setiawan A R, Bin Ani M H, Ueda M, et al. Oxygen permeability through internal oxidation zone in Fe-Cr alloys under dry and humid Conditions at 973 and 1073 K[J]. ISIJ Int., 2010, 50: 259
[26] Shen J N, Zhou L J, Li T F.Effect of water vapor on high temperature oxidation of Fe-Cr alloys[J]. Chin. J. Mater. Res., 1998, 12: 128(沈嘉年, 周龙江, 李铁藩. 水蒸气加速Fe-Cr合金高温氧化的作用[J]. 材料研究学报, 1998, 12: 128)
[27] Chen G.Effect of water vapor on high temperature oxidation behavior of Fe-13%Cr-5%Ni alloy at 800 ℃ [D]. Beijing: Tsinghua University, 2012(陈刚. 水蒸气对Fe-13%Cr-5%Ni合金在800 ℃高温氧化行为的影响 [D]. 北京: 清华大学, 2012)
[28] Luo H W, Xiang R, Chen L F, et al.Modeling decarburization kinetics of grain-oriented silicon steel[J]. Chin. Sci. Bull., 2014, 59: 1778
[1] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[2] 刘冠熙, 黄光宏, 罗学昆, 申造宇, 何利民, 李建平, 牟仁德. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57(5): 684-692.
[3] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[4] 张艳斌, 张立民, 张继旺, 曾京. 阳极氧化处理对2014-T6铝合金弯曲疲劳性能的影响*[J]. 金属学报, 2014, 50(6): 715-721.
[5] 宫子琪,陈子勇,柴丽华,相志磊,聂祚仁. Er高Nb TiAl基合金抗循环氧化性能研究[J]. 金属学报, 2013, 49(11): 1369-1373.
[6] Masanori Naitoh 陈耀东 Shunsuke Uchida Hidetoshi Okada. 流动加速腐蚀引起的管壁减薄分析及验证[J]. 金属学报, 2011, 47(7): 784-789.
[7] 陈树铭 李永德 柳洋波 杨振国 李守新 张哲峰. 不同循环载荷下54SiCr6钢的疲劳强度[J]. 金属学报, 2009, 45(4): 428-433.
[8] 李永德; 李守新; 杨振国; 柳洋波; 翁宇庆; 惠卫军; 戎利建 . 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68 .
[9] 聂义宏; 惠卫军; 傅万堂; 翁宇庆; 董瀚 . 中碳高强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43(10): 1031-1036 .
[10] 常春; 李木森; 陈传中; 田雷言 . MoSi2高温氧化层的微观结构[J]. 金属学报, 2003, 39(2): 126-130 .
[11] 李家宝; 覃明 . 弹簧钢60Si2Mn脱碳层软化的表征与研究[J]. 金属学报, 2000, 36(3): 287-290 .
[12] 李向阳;张永刚;陈昌麒;张孝吉;张通和;张荟星. 二元Ti-Al合金高温氧化机理[J]. 金属学报, 1997, 33(9): 964-970.
[13] 梅志;顾明元;吴人洁. SiC表面氧化层的非晶化转变[J]. 金属学报, 1997, 33(5): 557-560.
[14] 彭心平;许伯藩;刘新敏. 55SiMnVB弹簧钢疲劳破坏特性的研究[J]. 金属学报, 1988, 24(2): 126-130.