Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1388-1394    DOI: 10.11900/0412.1961.2018.00560
  研究论文 本期目录 | 过刊浏览 |
交流磁场对过共晶Al-Fe合金初生相的影响
张建锋1,蓝青2,郭瑞臻2,乐启炽2()
1. 东北大学理学院 沈阳 110819
2. 东北大学材料电磁过程教育部重点实验室 沈阳 110819
Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy
ZHANG Jianfeng1,LAN Qing2,GUO Ruizhen2,LE Qichi2()
1. College of Science, Northeastern University, Shenyang 110819, China
2. Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
全文: PDF(11881 KB)   HTML
摘要: 

利用XRD和OM研究了交流磁场对过共晶Al-2.55%Fe合金初生相的影响。结果表明:交流磁场不会改变过共晶Al-2.55%Fe合金初生相的类型,有无交流磁场作用下,初生相均为Al3Fe相,但交流磁场能显著改变初生Al3Fe相的分布和形貌。无磁场条件下,初生Al3Fe相在重力的作用下均匀分布在样品的底部,呈细小颗粒状。而在交流磁场的作用下,除了少部分细小颗粒状的初生Al3Fe相在样品底部呈金字塔状分布外,大部分初生Al3Fe相出现在样品的顶端边沿处,沿径向呈三角形分布。同时,顶部初生Al3Fe的相形貌由原来的细小颗粒状变为大的块状和棒状。随着磁感应强度的增大,交流磁场对初生Al3Fe相分布和形貌的影响增大,顶部初生Al3Fe相的含量增多。交流磁场对过共晶Al-2.55%Fe合金初生相分布和形貌的影响,主要是由交流磁场产生的Lorentz力和磁力共同作用的结果。

关键词 交流磁场过共晶Al-Fe合金凝固组织初生相    
Abstract

The type, morphology and distribution of the Fe-phase in the Al-Fe alloy are some of the key factors affecting the mechanical properties of the Al-Fe alloy. The alternating current (AC) magnetic field can significantly affect the solidification structure of the Al-Fe alloy. However, the mechanism of the Fe-phase in the Al-Fe alloy influenced by the AC magnetic field has not been fully revealed. Therefore, the effect of AC magnetic field on the primary phase of hypereutectic Al-2.55%Fe alloy is studied by means of XRD and OM in this work. The results show that the AC magnetic field cannot change the type of primary phase of the hypereutectic Al-2.55%Fe alloy, which means that the primary phase remains to be Al3Fe phase regardless of the treatment of the AC magnetic field, but the AC magnetic field can obviously influence the distribution and the morphology of the primary Al3Fe phase. Without treatment of AC magnetic field, the primary Al3Fe phase is fine and granular, and uniformly distributed at the bottom of the sample under the effect of gravity. However, under the influence of the AC magnetic field, most of the primary Al3Fe phase is located at the top edge of the sample and is distributed in the shape of a triangle along the radial direction, with only a small part of the fine, granular primary Al3Fe phase distributed in the shape of a pyramid at the bottom of the sample. At the same time, the primary Al3Fe phase morphology in the top of the sample transforms from the original fine particles to large blocks and rods. With the increase of the magnetic induction intensity, the influence of the AC magnetic field on the distribution and morphology of the primary Al3Fe phase grows stronger, and the content of the primary Al3Fe phase in the top of the sample also increases. The influence of AC magnetic field on the primary phase distribution and morphology of the hypereutectic Al-2.55%Fe alloy is the result of the combined action of the Lorentz force and the magnetic force generated by the AC magnetic field.

Key wordsAC magnetic field    hypereutectic Al-Fe alloy    solidification structure    primary phase
收稿日期: 2018-12-21     
ZTFLH:  TG113.12  
基金资助:中国博士后科学基金项目No(2015M571320);以及中央高校基本科研业务费项目No(N150504002)
通讯作者: 乐启炽     E-mail: qichil@mail.neu.edu.cn
Corresponding author: Qichi LE     E-mail: qichil@mail.neu.edu.cn
作者简介: 张建锋,男,1979年生,副教授,博士

引用本文:

张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
Jianfeng ZHANG, Qing LAN, Ruizhen GUO, Qichi LE. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy. Acta Metall Sin, 2019, 55(11): 1388-1394.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00560      或      https://www.ams.org.cn/CN/Y2019/V55/I11/1388

图1  实验设备示意图
图2  无交流磁场时Al-2.55%Fe合金的凝固组织
图3  磁场条件为20 Hz、300 A时Al-2.55%Fe合金的凝固组织
图4  磁场条件为20 Hz、200 A时Al-2.55%Fe合金的凝固组织
图5  磁场条件为20 Hz、100 A时Al-2.55%Fe合金的凝固组织
图6  过共晶Al-2.55%Fe合金的XRD谱
图7  Lorentz力示意图
[1] LuL, DahleA K. Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys [J]. Metall. Mater. Trans., 2005, 36A: 819
[2] KhalifaW, SamuelF H, GruzleskiJ E. Iron intermetallic phases in the Al corner of the Al-Si-Fe system [J]. Metall. Mater. Trans., 2003, 34A: 807
[3] PengS, ChenL P, ZhouQ. Research progress on microstructure refinement of Al-Fe alloy [J]. Found. Technol., 2013, 34: 523
[3] 彭 帅, 陈乐平, 周 全. Al-Fe合金凝固组织细化研究新进展 [J]. 铸造技术, 2013, 34: 523
[4] WangX, GuanR G, WangY. Formation mechanism of nanoscale Al3Fe phase in Al-Fe alloy during semisolid forming process [J]. Metall. Mater. Trans., 2018, 49B: 2225
[5] WangX J, ZhaoZ H, ZuoY B, et al. Effects of low frequency electromagnetic field on solidification of 7050 aluminium alloy during hot top casting [J]. Mater. Sci. Technol., 2009, 25: 1207
[6] PathakB N, KumarA, SahooK L, et al. Effect of Ni-Mg on the microstructure and properties of Al-(4-5)Fe-1V-1Si alloys [J]. Mater. Sci. Eng., 2006, A433: 310
[7] ZhaoY H, WangX B, LiuY L, et al. Influence of Si content and heat treatment on microstructure of Al-Fe-Si alloys [J]. China Found., 2014, 11: 418
[8] WangX, GuanR G, MisraR D K, et al. The mechanistic contribution of nanosized Al3Fe phase on the mechanical properties of Al-Fe alloy [J]. Mater. Sci. Eng., 2018, A724: 452
[9] LiuB, YuanX G, HuangH J. Microstructure and mechanical properties of hypereutectic Al-Fe alloys prepared by semi-solid formation [J]. China Found., 2011, 8: 424
[10] GillonP. Uses of intense d.c. magnetic fields in materials processing [J]. Mater. Sci. Eng., 2000, A287: 146
[11] JiaP, WangE G, LuH, et al. Effect of electromagnetic field on microstructure and mechanical property for Inconel 625 superalloy [J]. Acta Metall. Sin., 2013, 49: 1573
[11] 贾 鹏, 王恩刚, 鲁 辉等. 电磁场对Inconel 625合金凝固组织及力学性能的影响 [J]. 金属学报, 2013, 49: 1573
[12] LiX, RenZ M, FautrelleY. Phase distribution and phase structure control through a high gradient magnetic field during the solidification process [J]. Mater. Des., 2008, 29: 1796
[13] ChenD D, ZhangH T, WangX J, et al. Investigation on Microsegregation of Al-4.5%Cu alloy produced by low frequency electromagnetic casting [J]. Acta Metall. Sin., 2011, 47: 185
[13] 陈丹丹, 张海涛, 王向杰等. 低频电磁铸造Al-4.5%Cu合金微观偏析研究 [J]. 金属学报, 2011, 47: 185
[14] XuX J, DengA Y, WangE G, et al. Evolvement mechanism of surface oscillation marks on round billet during soft-contact electromagnetic continuous casting [J]. Acta Metall. Sin., 2009, 45: 464
[14] 许秀杰, 邓安元, 王恩刚等. 电磁软接触连铸圆坯表面振痕演变机理 [J]. 金属学报, 2009, 45: 464
[15] HanY, BanC Y, GuoS J, et al. Alignment behavior of primary Al3Fe phase in Al-Fe alloy under a high magnetic field [J]. Mater. Lett., 2007, 61: 983
[16] Huhemandula, YangH T, JiW H, et al. Effect of alternating magnetic field on microstructure and property of Al-5%Fe alloy [J]. Found. Technol., 2016, 37: 285
[16] 呼和满都拉, 杨洪涛, 冀文慧等. 电磁物理场对Al-5%Fe合金组织与性能的影响[J]. 铸造科技, 2016, 37: 285
[17] ZhangH T, NagaumiH, ZuoY B, et al. Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: Part 1: Development of a mathematical model and comparison with experimental results [J]. Mater. Sci. Eng., 2007, A448: 189
[18] LiM J, TamuraT, MiwaK. Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding [J]. Acta Mater., 2007, 55: 4635
[19] ZhangT, RenW L, DongJ W, et al. Effect of high magnetic field on the primary dendrite arm spacing and segregation of directionally solidified superalloy DZ417G [J]. J. Alloys Compd., 2009, 487: 612
[20] GuoS H. Electrodynamics [M]. 2nd Ed., Beijing: Higher Education Press, 1997: 118
[20] 郭硕鸿. 电动力学 [M]. 第2版,北京: 高等教育出版社, 1997: 118
[1] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[2] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[3] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[4] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[5] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[6] 张建锋, 蓝青, 乐启炽. 交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究[J]. 金属学报, 2018, 54(7): 1042-1050.
[7] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[8] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[9] 刘政,徐丽娜,余昭福,陈杨政. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究*[J]. 金属学报, 2016, 52(6): 698-706.
[10] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
[11] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[12] 赵九洲, 李璐, 张显飞. 合金凝固过程元胞自动机模型及模拟方法的发展*[J]. 金属学报, 2014, 50(6): 641-651.
[13] 张元,李新中,刘国怀,苏彦庆,郭景杰,傅恒志. 定向凝固Ti-46Al-2Cr-2Nb合金领先相及其生长取向与凝固进程的相关性[J]. 金属学报, 2013, 49(9): 1061-1068.
[14] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
[15] 胡锐,柳翊,张铁邦,寇宏超,李金山. TiAl基合金非平衡凝固过程中的相选择及凝固特征[J]. 金属学报, 2013, 49(11): 1295-1302.